首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设k为参数,试确定方程χ2+4χ=keχ的根的个数以及每个根所在的区间.
设k为参数,试确定方程χ2+4χ=keχ的根的个数以及每个根所在的区间.
admin
2018-06-12
67
问题
设k为参数,试确定方程χ
2
+4χ=ke
χ
的根的个数以及每个根所在的区间.
选项
答案
转化为函数方程F(χ)=(χ
2
+4χ+1)e
-χ
οk,为此需讨论函数F(χ)的增减性,极值与值域. 由F′(χ)=(2χ+4-χ
2
-4χ-1)e
-χ
=(3-2χ-χ
2
)e
-χ
=(3+χ)(1-χ)e
-χ
可知,函数F(χ)有两个驻点χ=-3与χ=1,结合[*]F(χ)=+∞与[*]F(χ)=0可列表讨论F(χ)的单调性与极值如下: [*] 函数F(χ)的示意图如图6—1. [*] 由此可得结论: (1)当k>[*]时直线y=k与曲线y=(χ
2
+4χ+1)e
-χ
有一个交点,其横坐标χ
1
<-3,即当k>[*]时方程χ
2
+4χ+1=ke
χ
有唯一根,此根位于区间(-∞,-3)内. (2)当k=[*]时,直线y=k与曲线y=(χ
2
+4χ+1)e
-χ
有两个交点,一个交点的横坐标χ
1
<-3,而另一个交点的横坐标χ
2
=1,即当k=[*]时,方程χ
2
+4χ+1=ke
χ
有两个根,一个位于区间(-∞,-3)内,另一个是χ
2
=1. (3)当0<k<[*]时,直线y=k与曲线y=(χ
2
+4χ+1)e
-χ
有三个交点,其横坐标分别为χ
1
<-3,-3<χ
2
<1,χ
3
>1,即当0<k<[*]时,方程χ
2
++4χ+1=ke
χ
有三个根,分别位于区间(-∞,-3),(-3.1).(1.+∞)内. (4)当-2e
3
<k≤0时,直线y=k与曲线y=(χ
2
+4χ+1)e
-χ
有两个交点,其横坐标分别为χ
1
<-3,-3<χ
2
<0,即当-2e
3
<k≤0时方程χ
2
+4χ+1=ke
χ
有两个根,分别位于区间(-∞,-3),(-3,0)内. (5)当k=-2e
3
时,直线y=k与曲线y=(χ
2
+4χ+1)e
-χ
有一个交点,其横坐标为χ
1
=-3,即这时方程χ
2
+4χ+1=ke
χ
有唯一根χ
1
=-3. (6)当k<-2e
3
时,直线y=k与曲线y=(y
2
+4χ+1)e
-χ
无交点,即此时方程χ
2
+4χ+1=ke
χ
无根.
解析
转载请注明原文地址:https://kaotiyun.com/show/hUg4777K
0
考研数学一
相关试题推荐
矩阵A=的三个特征值分别为______.
设3阶方阵A的特征值是1,2,3,它们所对应的特征向量依次为α1,α2,α3,令P=(3α3,α1,2α2),则P-1AP=______.
(Ⅰ)求级数的收敛域;(Ⅱ)求证:和函数S(χ)=定义于[0,+∞)且有界.
设z=,其中f(u,v)是连续函数,则dz=________.
已知方程组(Ⅰ)及方程组(Ⅱ)的通解为k1[-1,1,1,0]T+k2[2,-1,0,1]T+[-2,-3,0,0]T.求方程组(Ⅰ),(Ⅱ)的公共解.
设f(x)=arcsinx,ξ为f(x)在[0,t]上拉格朗日中值定理的中值点,0<t<1,求极限
落在平静水面的石头,产生同心波纹,若最外一圈波半径的增大率总是6m/s,问在2s末扰动水面面积的增大率为______m2/s.
积分=()
设f(x,y)在全平面有连续偏导数,曲线积分∫Lf(x,y)dx+xcosydy在全平面与路径无关,且f(x,y)dx+xcosydy=t2,求f(x,y).
曲面上任意一点处的切平面在三个坐标轴上的截距之和为()
随机试题
社会主义国家政治团体的特征是什么?
通过产品的设计、制造和营销,使其质优和适用,提高其在市场上的知名度和美誉度,在顾客心目中确定其名牌形象的战略是
属于IC类抗心律失常药物的是
患者,女,60岁。身高163cm,体重75kg,体检发现空腹血糖6.7mmoL/L,做口服葡萄糖耐量试验,OGTT2小时血糖为7.4mmoL/L。为该患者制定营养治疗计划,糖类占饮食总热量的百分比应为
地下工程防水混凝土墙体的第一道水平施工缝应留部位是()。
因施工等特殊情况需要使用明火作业的,下列理解错误的是()。
通常情况下,可转换公司债券的回售期限越短、转换比率越低、回售价格越小,回售的期权价值就越小。()
依据企业所得税法的规定,企业在年度中间终止经营活动的,向税务机关办理当期企业所得税汇算清缴的期限是自实际经营终止之日起()。
管理的实质是()。
【B1】【B11】
最新回复
(
0
)