首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设k为参数,试确定方程χ2+4χ=keχ的根的个数以及每个根所在的区间.
设k为参数,试确定方程χ2+4χ=keχ的根的个数以及每个根所在的区间.
admin
2018-06-12
93
问题
设k为参数,试确定方程χ
2
+4χ=ke
χ
的根的个数以及每个根所在的区间.
选项
答案
转化为函数方程F(χ)=(χ
2
+4χ+1)e
-χ
οk,为此需讨论函数F(χ)的增减性,极值与值域. 由F′(χ)=(2χ+4-χ
2
-4χ-1)e
-χ
=(3-2χ-χ
2
)e
-χ
=(3+χ)(1-χ)e
-χ
可知,函数F(χ)有两个驻点χ=-3与χ=1,结合[*]F(χ)=+∞与[*]F(χ)=0可列表讨论F(χ)的单调性与极值如下: [*] 函数F(χ)的示意图如图6—1. [*] 由此可得结论: (1)当k>[*]时直线y=k与曲线y=(χ
2
+4χ+1)e
-χ
有一个交点,其横坐标χ
1
<-3,即当k>[*]时方程χ
2
+4χ+1=ke
χ
有唯一根,此根位于区间(-∞,-3)内. (2)当k=[*]时,直线y=k与曲线y=(χ
2
+4χ+1)e
-χ
有两个交点,一个交点的横坐标χ
1
<-3,而另一个交点的横坐标χ
2
=1,即当k=[*]时,方程χ
2
+4χ+1=ke
χ
有两个根,一个位于区间(-∞,-3)内,另一个是χ
2
=1. (3)当0<k<[*]时,直线y=k与曲线y=(χ
2
+4χ+1)e
-χ
有三个交点,其横坐标分别为χ
1
<-3,-3<χ
2
<1,χ
3
>1,即当0<k<[*]时,方程χ
2
++4χ+1=ke
χ
有三个根,分别位于区间(-∞,-3),(-3.1).(1.+∞)内. (4)当-2e
3
<k≤0时,直线y=k与曲线y=(χ
2
+4χ+1)e
-χ
有两个交点,其横坐标分别为χ
1
<-3,-3<χ
2
<0,即当-2e
3
<k≤0时方程χ
2
+4χ+1=ke
χ
有两个根,分别位于区间(-∞,-3),(-3,0)内. (5)当k=-2e
3
时,直线y=k与曲线y=(χ
2
+4χ+1)e
-χ
有一个交点,其横坐标为χ
1
=-3,即这时方程χ
2
+4χ+1=ke
χ
有唯一根χ
1
=-3. (6)当k<-2e
3
时,直线y=k与曲线y=(y
2
+4χ+1)e
-χ
无交点,即此时方程χ
2
+4χ+1=ke
χ
无根.
解析
转载请注明原文地址:https://kaotiyun.com/show/hUg4777K
0
考研数学一
相关试题推荐
设A是3阶矩阵,α1,α2,α3是线性无关的3维列向量,且Aα1=α1-α2+3α3,Aα2=4α1-3α2+5α3,Aα3=0.求矩阵A的特征值和特征向量.
已知A=,二次型f(χ1,χ2,χ3)=χT(ATA)χ的秩为2,(1)求实数a的值;(2)求正交变换χ=Qy将f化为标准形.
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示.(1)求a的值;(2)将β1,β2,β3由α1,α2,α3线性表示
求线性方程组的通解,并求满足条件χ12=χ22的所有解.
设f(χ)在(-∞,+∞)内二阶可导且f〞(χ)>0,则χ>0,h1>0,h2>0,有
求下列曲面的方程:以曲线为母线,绕z轴旋转一周而生成的曲面;
设y=ex为微分方程xy’+P(x)y=x的解,求此微分方程满足初始条件y(ln2)=0的特解.
当x→0+时,下列无穷小中,阶数最高的是().
求解初值问题
随机试题
溶液中存在大量多价反离子时,可能降低阴离子表面活性剂的溶解度,产生盐析现象。()
以下对瘫痪病人的护理不正确的是
下列关于房地产纪经行业信用管理的表述中,不正确的是()。
在某建设项目中,合同双方约定承包单位垫资30%施工,并约定了利息,承包单位完成了约定的工程量后,如果建设单位不按约定履行,则()。
根据下面材料。回答下列题目:投资者预测来年的市场收益率为12%,国库券收益率为4%。CFI公司股票的贝塔值为0.50,在外流通股的市价总值为1亿美元。假定该股票被公正地定价,投资者估计其期望收益率为( )。
基金招募说明书需要包括()等内容。
城镇化是现代化的必由之路,既是经济发展的结果,又是经济发展的动力。推进新型城镇化的核心是()
关系数据库中,实现主码标识元组的作用是通过
下列关于接入技术特征的描述中,错误的是()。
GeorgeHerbertMeadsaidthathumansaretalkedintohumanity.Hemeantthatwegainpersonalidentityaswecommunicatewithot
最新回复
(
0
)