首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求线性方程组的通解,并求满足条件χ12=χ22的所有解.
求线性方程组的通解,并求满足条件χ12=χ22的所有解.
admin
2016-05-09
43
问题
求线性方程组
的通解,并求满足条件χ
1
2
=χ
2
2
的所有解.
选项
答案
对增广矩阵作初等行变换,有 [*] 方程组的解:令χ
3
=0,χ
4
=0得χ
2
=1,χ
1
=2,即α=(2,1,0,0)
T
. 导出组的解: 令χ
3
=1,χ
4
=0得χ
2
=3,χ
1
=1,即η
1
=(1,3,1,0)
T
; 令χ
3
=0,χ
4
=1得χ
2
=0,χ
1
=-1,即η
2
=(-1,3,1,0)
T
. 因此方程组的通解是:(2,1,0,0)
T
+k
1
(1,3,1,0)
T
+k
2
(-1,0,0,1)
T
如果要求通解满足χ
1
2
=χ
2
2
,则有(2+k
1
-k
2
)
2
=(1+3k
1
)
2
,那么2+k
1
-k
2
=1+3k
1
或2+k
1
-k
2
=-(1+3k
1
),即k
2
=1-2k
1
或k
2
=3+4
1
. 所以(1,1,0,1)
T
+k(3,3,1,-2)
T
或(-1,1,0,3)
T
+k(-3,3,1,4)
T
(k为任意常数)是满足χ
1
2
=χ
2
2
的所有解.
解析
转载请注明原文地址:https://kaotiyun.com/show/1Mw4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 D
微分方程y’cosy=x-siny的通解为________
设f(x)在[0,﹢∞)上连续,且f(x)=dt在(Ⅱ)的基础上,任取x0>ξ>0,xn=2f(xn-1)(n≥1),证明:一ξ
设f(x)在[0,﹢∞)上连续,且f(x)=dt证明:方程2f(x)=x在(0,﹢∞)内有唯一实根ξ
设方程有形如z=φ(r)=φ(y/x)的解,且满足φ(1)=0,φ’(1)=1,求z-φ(y/x)的表达式
求由球面x2+y2+z2=1,x2+y2+z2=4z及锥面z=的上半部分所围的均质物体对位于坐标原点处的质量为m的质点的引力,设其密度μ为常数.
已知函数u=f()具有二阶连续导数,求的值.
行列式=().
甲袋中有2个白球,乙袋中有2个黑球,每次从各袋中任取一球交换后放人另一袋中,共交换3次,用X表示3次交换后甲袋中的白球数,求X的概率分布.
若随机变量X1,X2,…,Xn相互独立同分布于N(μ,22),则根据切比雪夫不等式得P{|X ̄-μ|≥2}≤_________.
随机试题
土地抵押权变更登记,下列()情形的申请人包括抵押人、抵押权人和受让人。
如图4-60所示均质圆盘放在光滑水平面上受力F作用,则质心C的运动为()。
砂砾石地基的特点包括()。
下列选项中,属于当事人提起诉讼必须符合的条件的有()。
人工智能听起来很遥远,其实已经______到我们的日常工作和生活中了。人工智能的应用,让生活更便捷、更有乐趣,节约时间、解放体力,甚至未来机器将______人类进行一些基础性的劳作,这个场景令人憧憬。
快递包装标准滞后、回收循环难度大、环保意识不足,是阻碍快递包装绿色化的三大瓶颈。要打破这些瓶颈,还有大量的工作要做。比如,必须解决现行标准多为推荐性指标、约束力不强、执行有难度等问题,出台国家级的强制性标准;要解决对快递件的“五花大绑”、过度包装问题,首先
阅读下述材料,谈谈你对班主任做法的认识。一位家长在星期一发现儿子上学时磨磨蹭蹭,遂追问是怎么回事,孩子犹豫了半天才道出实情。原来在上个星期二早上,班主任老师召开全班同学会议,用无记名的方式评选3名“坏学生”,因有两名同学在最近违反了学校纪律,无可
A、 B、 C、 D、 B
ALACRITY:
A、Becausewemightbeofferedadishofinsects.B、Becausenothingbutfreshlycookedinsectsareserved.C、Becausesomeyuppies
最新回复
(
0
)