首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为4×3矩阵,η1,η2,η3是非齐次线性方程组Ax=β的三个线性无关的解,k1,k2为任意常数,则Ax=β的通解为( )
设A为4×3矩阵,η1,η2,η3是非齐次线性方程组Ax=β的三个线性无关的解,k1,k2为任意常数,则Ax=β的通解为( )
admin
2021-01-25
45
问题
设A为4×3矩阵,η
1
,η
2
,η
3
是非齐次线性方程组Ax=β的三个线性无关的解,k
1
,k
2
为任意常数,则Ax=β的通解为( )
选项
A、
+k
1
(η
2
一η
1
)。
B、
+k
2
(η
2
一η
1
)。
C、
+k
1
(η
3
一η
1
)+k
2
(η
2
一η
1
)。
D、
+k
1
(η
2
一η
1
)+k
2
(η
3
一η
1
)。
答案
C
解析
方法一:η
1
,η
2
,η
3
是方程组Ax=β的三个线性无关的解向量,所以可知η
2
一η
1
,η
3
一η
1
是Ax=0的两个线性无关的解向量,即Ax=0的基础解系中至少含有两个线性无关的解,所以可以排除A,B两项。
又因为
是Ax=0的一个解,而不是Ax=β的解,因此可以排除D选项,所以正确答案为C。
方法二:η
1
,η
2
,η
3
是方程组Ax=β的三个线性无关的解向量,所以可知η
2
一η
1
,η
3
一η
1
是Ax=0的两个线性无关的解向量,即Ax=0的基础解系中至少含有两个线性无关的解,因此3一r(A)≥2,故r(A)≤1。
根据A≠0又可以得到r(A)≥1,因此可知r(A)=1,这样Ax=0的基础解系中正好含有两个线性无关的解向量,因此可知η
2
一η
1
,η
3
一η
1
是Ax=0的一个基础解系。所以Ax=0的通解为
k
1
(η
3
一η
1
)+k
2
(η
2
一η
1
),其中k
1
,k
2
为任意常数。
η
1
,η
2
,η
3
是方程组Ax=β的解,所以
是Ax=β的一个特解,所以Ax=β的通解为
+k
1
(η
3
一η
1
)+k
2
(η
2
一η
1
),其中k
1
,k
2
为任意常数。
转载请注明原文地址:https://kaotiyun.com/show/hjx4777K
0
考研数学三
相关试题推荐
设函数f(x)连续,且f’(0)>0,则存在δ>0使得().
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则fˊ(1)=().
累次积分∫01dx∫x1f(x,y)dy+∫12dy∫02-yf(x,y)dx可写成()
设函数f(x)连续,下列变上限积分函数中,必为偶函数的是().
曲线y=xe1/x2
一条曲线经过点(2,0),且在切点与y轴之间的切线长为2,求该曲线.
设随机变量Xij(i,j=1,2,…,n;n≥2)独立同分布,EXij=2,则行列式的数学期望EY=________。
设a,b,a+b均非0,则行列式=________.
设二次型2x12+x22+x32+2x1x2+ax2x3的秩为2,则a=__________.
[2014年]设随机变量X的概率分布为P(X=1)=P(X=2)=在给定X=i的条件下,随机变量y服从均匀分布U(0,i),i=1,2.求Y的分布函数;
随机试题
______是运用生态学原理,采用系统工程方法,因地制宜,合理组织农、林、牧、副、渔生产,以实现生态效益、经济效益和社会效益协调发展的农业生产体系。
阅读莫泊桑的《米龙老爹》中的几段文字,然后回答下列问题。那匹安静的马等候他的主人。米龙老爹骑了上去,教它用“大颠”的步儿穿过平原走开了。一小时以后,他又看见两个归营的骑兵并辔而来。他一直对准他们赶过去,又用德国话喊着:“救人!救人!”那两个普兵认明了军
A.血间接胆红素增高、贫血、网织红细胞增高B.血间接胆红素增高、贫血、网织红细胞正常或减低C.血间接胆红素增高、无贫血、网织红细胞正常D.血间接胆红素正常、贫血、网织红细胞减低E.血间接胆红素正常、贫血、网织红细胞正常符合MDS的是
高压整流方式中不包括
影响供氮系统的主要因素不包括()。
社会主义职业道德建设要()
印象派绘画代表作之一《日出·印象》的作者是()。
浓度分别为40%和10%的A、B两种糖水混合后浓度变为30%,若再加入300克20%的糖水,则混合糖水的浓度变为25%,则B种糖水为()克。
太空站
ItwasabeautifulsummerdayandIwastakingawalkinthedowntownareaofMadrid.WhenIturnedastreet【C1】______Ihea
最新回复
(
0
)