首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为4×3矩阵,η1,η2,η3是非齐次线性方程组Ax=β的三个线性无关的解,k1,k2为任意常数,则Ax=β的通解为( )
设A为4×3矩阵,η1,η2,η3是非齐次线性方程组Ax=β的三个线性无关的解,k1,k2为任意常数,则Ax=β的通解为( )
admin
2021-01-25
62
问题
设A为4×3矩阵,η
1
,η
2
,η
3
是非齐次线性方程组Ax=β的三个线性无关的解,k
1
,k
2
为任意常数,则Ax=β的通解为( )
选项
A、
+k
1
(η
2
一η
1
)。
B、
+k
2
(η
2
一η
1
)。
C、
+k
1
(η
3
一η
1
)+k
2
(η
2
一η
1
)。
D、
+k
1
(η
2
一η
1
)+k
2
(η
3
一η
1
)。
答案
C
解析
方法一:η
1
,η
2
,η
3
是方程组Ax=β的三个线性无关的解向量,所以可知η
2
一η
1
,η
3
一η
1
是Ax=0的两个线性无关的解向量,即Ax=0的基础解系中至少含有两个线性无关的解,所以可以排除A,B两项。
又因为
是Ax=0的一个解,而不是Ax=β的解,因此可以排除D选项,所以正确答案为C。
方法二:η
1
,η
2
,η
3
是方程组Ax=β的三个线性无关的解向量,所以可知η
2
一η
1
,η
3
一η
1
是Ax=0的两个线性无关的解向量,即Ax=0的基础解系中至少含有两个线性无关的解,因此3一r(A)≥2,故r(A)≤1。
根据A≠0又可以得到r(A)≥1,因此可知r(A)=1,这样Ax=0的基础解系中正好含有两个线性无关的解向量,因此可知η
2
一η
1
,η
3
一η
1
是Ax=0的一个基础解系。所以Ax=0的通解为
k
1
(η
3
一η
1
)+k
2
(η
2
一η
1
),其中k
1
,k
2
为任意常数。
η
1
,η
2
,η
3
是方程组Ax=β的解,所以
是Ax=β的一个特解,所以Ax=β的通解为
+k
1
(η
3
一η
1
)+k
2
(η
2
一η
1
),其中k
1
,k
2
为任意常数。
转载请注明原文地址:https://kaotiyun.com/show/hjx4777K
0
考研数学三
相关试题推荐
设常数k>0,则级数
设随机变量X与Y独立,且X~B(1,),Y~N(0,1),则概率P{XY≤0}的值为
设随机变量X服从正态分布N(μ,σ2),其分布函数为F(x),则有()
某射手的命中率为p(0<p<1),该射手连续射击n次才命中k次(k≤n)的概率为()
设函数f(x)可导,且曲线y=f(x)在点(x0,f(x0))处的切线与直线y=2-x垂直,则当△x→0时,该函数在x=x0处的微分dy是()
累次积分∫01dx∫x1f(x,y)dy+∫12dy∫02-yf(x,y)dx可写成()
设则f(x,y)在点(0,0)处
[2002年]设齐次线性方程组其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.
[2002年]设随机变量X和Y都服从标准正态分布,则().
(2009年)当x→0时,f(x)=x一sinax与g(x)=x2ln(1一bx)是等价无穷小,则()
随机试题
特异性投射系统的特点是( )。【2003年考试真题】
A.丙磺舒B.克拉维酸C.舒巴坦钠D.他唑巴坦E.甲氧苄啶因口服吸收差,可与氨苄西林以1:1的形式以次甲基相连,得到舒他西林的药物是()。
下列关于城市消防远程监控系统中用户服务系统软件的使用与检查要求的叙述中,错误的是()。
(操作员:王主管;账套:601账套;操作日期:2015年1月31日)设置固定资产变动方式。固资变动方式编码:06固资变动方式名称:投资者投入变动类型:增加固定资产
对风险进行识别、衡量、分析,并在此基础上有效处置,以最低成本实现最大安全保障的管理方法是()。
下列金融机构中,不属于狭义“影子银行”的是()。
下列各项中,不属于增值税征税范围的是()。
下列注册会计师进行会计分录测试的做法中,错误的是()。
[*]
LearningthroughTestsTakingatestisnotjustapassivemechanismforassessinghowmuchpeopleknow,accordingtonewre
最新回复
(
0
)