首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
某五元齐次线性方程组的系数矩阵经初等变换化为,则自由变量可取为 ①x4,x5; ②x3,x5; ③x1,x5; ④x2,x3。 那么正确的共有( )
某五元齐次线性方程组的系数矩阵经初等变换化为,则自由变量可取为 ①x4,x5; ②x3,x5; ③x1,x5; ④x2,x3。 那么正确的共有( )
admin
2019-02-23
33
问题
某五元齐次线性方程组的系数矩阵经初等变换化为
,则自由变量可取为
①x
4
,x
5
; ②x
3
,x
5
; ③x
1
,x
5
; ④x
2
,x
3
。
那么正确的共有( )
选项
A、1个。
B、2个。
C、3个。
D、4个。
答案
B
解析
因为系数矩阵的秩r(A)=3,则n-r(A)=5-3=2,故应当有两个自由变量。
由于去掉x
4
,x
5
两列之后,所剩三阶矩阵为
,因为其秩与r(A)不相等,故x
4
,x
5
不是自由变量。同理,x
3
,x
5
不能是自由变量。
而x
1
,x
5
与x
2
,x
3
均可以是自由变量,因为行列式
都不为0。
所以应选B。
转载请注明原文地址:https://kaotiyun.com/show/hn04777K
0
考研数学一
相关试题推荐
设,求矩阵A可对角化的概率.
设,当a,b为何值时,存在矩阵C使得Ac-CA=B,并求所有矩阵C.
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.判断矩阵A可否对角化.
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.求矩阵A的特征值;
问λ取何值时,齐次线性方程组,有非零解.
设方程组为矩阵A的分别属于特征值λ1=1,λ2=一2,λ3=一l的特征向量.求|A*+3E|.
设A,B为三阶矩阵,A~B,λ1=一1,λ2=1为矩阵A的两个特征值,又|B-1|=则
设A,B为满足AB=O的任意两个非零矩阵,则().
设X,Y为两个随机变量,若对任意非零常数a,b有D(aX+bY)=D(aX—bY),下列结论正确的是().
设A,B为两个随机事件,其中0
随机试题
头脑风暴法的优点及影响因素。
妊娠高血压是指
患者女性,65岁,慢性咳嗽、咳痰20余年,每年持续3个月以上,以冬季为重。近3年出现活动后气急,偶有双下肢水肿。今日晨起突感右上胸针刺样痛,继之出现呼吸困难,大汗,不能平卧,急来诊治。若查体气管左移,右肺呼吸音消失,X线胸片示肋间隙增宽,左肺透亮度增加
(2008年)已知矩阵则A的秩r(A)等于()。
老陈现年60岁,用趸缴保费购买了一个10年延期全额偿还年金,保费为20万元,每年给付金额为2万元。问:假设老陈在65岁死亡,保险公司的给付金额分别是多少?()
A、B两种股票各种可能的投资收益率以及相应的概率如下表所示。要求:计算两种股票的期望收益率。
暗黑色的瓶装奶是为了防止何种维生素被破坏()。[辽宁省2009年11月三级真题]
从1、2、3、4、5、6、7、8、9这几个数字中选择3个数字,使它们的乘积能够被9整除,问共有多少种不同的方法?
党的创造力、凝聚力、战斗力
下列关于IEEE802.11b协议的描述中,错误的是()。
最新回复
(
0
)