首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶实矩阵,有Aξ=λξ,ATη=μη,其中λ,μ是实数,且λ≠μ,ξ,η是n维非零向量,证明:ξ,η正交.
设A是n阶实矩阵,有Aξ=λξ,ATη=μη,其中λ,μ是实数,且λ≠μ,ξ,η是n维非零向量,证明:ξ,η正交.
admin
2017-06-14
27
问题
设A是n阶实矩阵,有Aξ=λξ,A
T
η=μη,其中λ,μ是实数,且λ≠μ,ξ,η是n维非零向量,证明:ξ,η正交.
选项
答案
Aξ=λξ,两边转置得 ξ
T
A
T
=λξ
T
, 两边右乘η,得 ξ
T
A
T
η=λξ
T
η, ξ
T
μη=λξ
T
η, (λ-μ)ξ
T
η=0,λ≠μ, 故ξ
T
0,即ξ,η相互正交.
解析
转载请注明原文地址:https://kaotiyun.com/show/hpu4777K
0
考研数学一
相关试题推荐
设非齐次线性微分方程y’+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解是
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B):②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则秩(A)=秩(B);④若秩(
若3维列向量α,β满足αTβ=2,其中αT为α为转置,则矩阵βαT的非零特征值为
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3.令P=(α1,α2,α3),求p-1AP.
设奇函数f(x)在[-1,1]上具有2个阶导数,且f(x)=1。证明:存在η∈(-1,1),使得f"(η)+f’(η)=1.
设奇函数f(x)在[-1,1]上具有2个阶导数,且f(x)=1。证明:存在ξ∈(0,1),使得f’(ξ)=1;
设矩阵A,B满足A*BA=2BA-8E,其中E为单位矩阵,A*为A的伴随矩阵,则B=________.
设X,Y是两个随机变量,且P|X≤1,Y≤1}=4/9,P{X≤1}=P{Y≤1}=5/9,则P{min(X,Y)≤1}=().
设A是n阶正定矩阵,E是n阶单位阵,证明A+E的行列式大于1.
随机试题
A.大椎B.水沟C.太冲D.丰隆E.神门醒脑开窍宜用
某患者已有数年怕热、多汗、心率110次/分,食量大,但逐渐消瘦,检查发现FT4及FT3增高,昨天突然体温达40℃,心率150次/分,伴恶心、呕吐、腹泻,大汗持续而昏睡,急诊为甲状腺功能亢进症伴甲状腺危象,其原因是
传染科的工作特点不包括()
全淹没干粉灭火系统应均匀分布,喷头与墙的距离不大于()m。
证券公司从事资产管理业务应当遵守的原则有()。
下列各项中,属于不变资金的是()。
青少年在青春发育期表现出动脉血压暂时性升高的现象称为()。
Notsolongago,itwasthestuffofnightmares:youpickupthelandlinetelephoneandthere’snodialingtone.Nothing.Theph
设有数组定义:inta[]={11,22,33,44,55,66,77,88,99};则执行下列程序段后的输出结果是______。for(inti=0;i<a.length;i++)if(a[i]%3==0)System.o
FinallythedirtroadinMainewasleadinghome.Thetiretouchedthefirstprofanityofpavement,andsubtlymyvacationbegan
最新回复
(
0
)