首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
在下列二元函数中,f’’xy(0,0)≠f’’yx(0,0)的二元函数是
在下列二元函数中,f’’xy(0,0)≠f’’yx(0,0)的二元函数是
admin
2019-08-12
35
问题
在下列二元函数中,f’’
xy
(0,0)≠f’’
yx
(0,0)的二元函数是
选项
A、f(x,y)=x
2
+2x
2
y
2
+y
10
.
B、f(x,y)=ln(1+x
2
+y
2
)+cosxy.
C、
D、
答案
C
解析
对于(A),(B):f(x,y)均是二元初等函数,
均连续,所以
因而(C),(D)中必有一个是f’’
xy
(0,0)=f’’
yx
(0,0),而另一个是f’
xy
(0,0)≠f’’
yz
(0,0).现考察(C).
当(x,y)≠(0,0)时,
当(x,y)=(0,0)时,
f(x,0)|
x=0
=0.
f’’
xy
(0,0)=
f’
x
(0,y)|
y=0
=
(=y)|
y=0
=-1.
当(x,y)≠(0,0)时,
当(x,y)=(0,0)时,
因此,f’’
xy
(0,0)≠f’’
yz
(0,0).选(C).
转载请注明原文地址:https://kaotiyun.com/show/hvN4777K
0
考研数学二
相关试题推荐
已知二次型f(x1,x2,x3)=x12-2x22+bx32-4x1x2+4x1x3+2ax2x3(a>0)经正交变换化成了标准形f=2y12+2y22-7y32.求a、b的值和正交矩阵P.
设矩阵A=可逆,向量α=是矩阵A*的一个特征向量,λ是α对应的特征值.其中A*是A的伴随矩阵.试求a、b和λ的值.
设A、B均为n阶矩阵,且AB=A-B,A有n个互不相同的特征值λ1,λ2,…,λn,证明:(1)λi≠-1(i=1,2,…,n);(2)AB=BA;(3)A的特征向量都是B的特征向量;(4)B可相似对角化.
设λ1,λ2是n阶矩阵A的两个不同特征值,x1,x2分别是属于λ1,λ2的特征向量.证明:x1+x2不是A的特征向量.
设α1=(1,0,-2)T和α2=(2,3,8)T都是A的属于特征值2的特征向量,又向量β=(0,-3,-10)T,则Aβ=_______.
计算[1+yf(x2+y2)]dxdy,其中D是由y=x3,y=1,x=一1所围成的区域,f(x,y)是连续函数.
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2
设f(x)二阶连续可导,且f"(x)≠0,又f(x+h)=f(x)+f’(x+θh)h(0
判断下列结论是否正确?为什么?(Ⅰ)若函数f(χ),g(χ)均在χ0处可导,且f(χ0)=g(χ0),则f′(χ0)=g′(χ0);(Ⅱ)若χ∈(χ0-δ,χ0+δ),χ≠χ0时f(χ)=g(χ),则f(χ)与g(χ)在χ=χ0处有相同
设φ(x)在x=a的某邻域内有定义,f(x)=|x-a|φ(x).则“φ(x)在x=a处连续”是“f(x)在x=a处可导”的()
随机试题
下列不属于职业道德特点的是()。
先有设计图纸,然后按图纸施工,这说明认识先于实践。()
关于病毒性肝炎的病理变化,不正确的是
桑螵蛸散与天王补心丹两方组成中均含有的药物是()
下列关于肺扩张反射的叙述,哪一项是错误的
CFR价格条件下,开证申请书应表明要求买方提交的提单有()字样。
“备案号”栏应填()。“标记唛码及备注”栏应填()。
甲企业2017年7月1日按面值发行3年期公司债券5000万元。该债券到期一次还本付息,票面年利率为6%(与实际年利率相等)。则甲企业2017年应确认的财务费用为()万元。
对我国城镇化建设说法不准确的是()。
Careeristsarepeoplewhoseself-imageisdeterminedalmostexclusivelybytheirjobs.【B1】______everythingtheydoisdesignedt
最新回复
(
0
)