首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A、B均为n阶矩阵,且AB=A-B,A有n个互不相同的特征值λ1,λ2,…,λn,证明: (1)λi≠-1(i=1,2,…,n); (2)AB=BA; (3)A的特征向量都是B的特征向量; (4)B可相似对角化.
设A、B均为n阶矩阵,且AB=A-B,A有n个互不相同的特征值λ1,λ2,…,λn,证明: (1)λi≠-1(i=1,2,…,n); (2)AB=BA; (3)A的特征向量都是B的特征向量; (4)B可相似对角化.
admin
2018-08-02
37
问题
设A、B均为n阶矩阵,且AB=A-B,A有n个互不相同的特征值λ
1
,λ
2
,…,λ
n
,证明:
(1)λ
i
≠-1(i=1,2,…,n);
(2)AB=BA;
(3)A的特征向量都是B的特征向量;
(4)B可相似对角化.
选项
答案
(1)即证|-E-A|≠0,或|E+A|≠0或E+A可逆,这可由AB=A-B[*](A+E)(E-B)=E,[*]A+E可逆,且(A+E)
-1
=E-B. (2)由(1)的(A+E)
-1
=E-B,[*](A+E)(E-B)=(E-B)(A+E),即A-AB+E-B=A+E-BA-B,[*]AB=BA. (3)设x为A的属于特征值λ
i
的特征向量,则Ax=λ
i
x,两端左乘B,并利用BA=AB,得A(Bx)=λ
i
(Bx),若Bx≠0,则Bx亦为A的属于λ
i
的特征向量,因属于λ
i
的特征子空间是一维的,故存在常数μ,使Bx=μx,因此x也是B的特征向量;若Bx=0,则Bx=0x,x也是B的属于特征值0的特征向量. (4)由条件知A有n个线性无关的特征向量,于是由(3)知B也有n个线性无关的特征向量,故B相似于对角矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/11j4777K
0
考研数学二
相关试题推荐
设函数f(x)在内连续,其2阶导函数(x)的图形如右图所示,则曲线y=f(x)的拐点个数为
下列反常积分中收敛的
求y=∫0x(1-t)arctantdt的极值.
设f(x)二阶可导,f(0)=f(1)=0且证明:存在ξ∈(0,1),使得f"(ξ)≥8.
求曲线的斜渐近线.
计算积分:∫03(|x—1|+|x一2|)dx.
求矩阵的实特征值及对应的特征向量.
累次积分f(x2+y2)dx(R>0)化为极坐标形式的累次积分为()
已知齐次线性方程组(I)又已知齐次线性方程组(Ⅱ)的基础解系为ξ1=(2,一1,a,1)T,ξ2=(一1,0,4,a+6)T,试问当a为何值时,方程组(I)和(Ⅱ)有非零公共解?并求出全部非零公共解.
计算I=∫Г(x2+y2)zds,其中Г为锥面螺线x=tcost,y=tsint,z=t上相应于t从0变到1的一段弧.
随机试题
引起双侧输尿管积水的常见原因是
结核性脑膜炎的发生最常见于
患者,女性,56岁。因头晕、头痛就医,测血压165/105mmHg,有高血压家族史。诊断为原发性高血压。原发性高血压最严重的并发症是
A市一座高架桥,上部结构为30m预制工梁,采用先简支后连续的结构形式,共12跨,桥宽29.5m,为双幅式桥面。项目部在施工方案确定后,便立即开始了预制场地建设。由于某种原因,延误了工期;为在后阶段弥补损失的工期,项目部补充预制台座,加强调度,加快工梁的预制
仲裁庭由( )名仲裁员组成时,应设首席仲裁员。
一个完整的计算机系统包括()。
“女子无才便是德”,这句话体现出态度构成要素中的()。
国外某教授最近指出,长着一张娃娃脸的人意味着他将享有更长的寿命,因为人们的生活状况很容易反映在脸上。从1990年春季开始,该教授领导的研究小组对826对70岁以上的双胞胎进行了体能和认知测试,并拍了他们的面部照片。在不知道他们确切年龄的情况下,三名研究助手
设A=(α1,α2,…,αn)是实矩阵,证明ATA是对角矩阵α1,α2,…,αn两两正交.
Whatarethesetwotalkingabout?
最新回复
(
0
)