首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A、B均为n阶矩阵,且AB=A-B,A有n个互不相同的特征值λ1,λ2,…,λn,证明: (1)λi≠-1(i=1,2,…,n); (2)AB=BA; (3)A的特征向量都是B的特征向量; (4)B可相似对角化.
设A、B均为n阶矩阵,且AB=A-B,A有n个互不相同的特征值λ1,λ2,…,λn,证明: (1)λi≠-1(i=1,2,…,n); (2)AB=BA; (3)A的特征向量都是B的特征向量; (4)B可相似对角化.
admin
2018-08-02
48
问题
设A、B均为n阶矩阵,且AB=A-B,A有n个互不相同的特征值λ
1
,λ
2
,…,λ
n
,证明:
(1)λ
i
≠-1(i=1,2,…,n);
(2)AB=BA;
(3)A的特征向量都是B的特征向量;
(4)B可相似对角化.
选项
答案
(1)即证|-E-A|≠0,或|E+A|≠0或E+A可逆,这可由AB=A-B[*](A+E)(E-B)=E,[*]A+E可逆,且(A+E)
-1
=E-B. (2)由(1)的(A+E)
-1
=E-B,[*](A+E)(E-B)=(E-B)(A+E),即A-AB+E-B=A+E-BA-B,[*]AB=BA. (3)设x为A的属于特征值λ
i
的特征向量,则Ax=λ
i
x,两端左乘B,并利用BA=AB,得A(Bx)=λ
i
(Bx),若Bx≠0,则Bx亦为A的属于λ
i
的特征向量,因属于λ
i
的特征子空间是一维的,故存在常数μ,使Bx=μx,因此x也是B的特征向量;若Bx=0,则Bx=0x,x也是B的属于特征值0的特征向量. (4)由条件知A有n个线性无关的特征向量,于是由(3)知B也有n个线性无关的特征向量,故B相似于对角矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/11j4777K
0
考研数学二
相关试题推荐
已知函数f(x)在区间[a,+∞)上具有2阶导数,f(a)=0,(x)>0,(x)>0,设b>a,曲线y=f(x)在点(b,f(b))处的切线与x轴的交点是(x0,0),证明a<x0<b.
[*]
设z=f(x,y)由方程z-y-x+xez-y-x=0确定,求dz.
设f(x)在[a,b]上二阶可导,且f’(a)=f’(b)=0.证明:存在ξ∈(a,b),使得
设向量组(Ⅰ):α1,α2,…,αs的秩为r1,向量组(Ⅱ):β1,β2,…,βs的秩为r2,且向量组(Ⅱ)可由向量组(Ⅰ)线性表示,则().
设的特征向量,则a=_______,b=_______.
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22-2y32,且A*+2E的非零特征值对应的特征向量为α1=,求此二次型.
求微分方程的通解.
求矩阵的实特征值及对应的特征向量.
已知随机变量X和Y分别服从正态分布N(1,32)和N(0,42),且X与Y的相关系数ρXY=.(1)求E(Z)和D(Z);(2)求X与Z的相关系数ρXY;(3)问X与Z是否相互独立,为什么?
随机试题
某公司将客户细分为老年客户、中年客户和青年客户,这种细分属于()。
根据《临床输血技术规范》有关《临床输血申请单》规定.表述错误的是
直接同种型识别
债权人提出破产申请时,应当提供的有关证据包括()。
下列属于学校常见违法行为的是()。(1)疏于管理,未尽到保护学生的职责而造成学生伤亡(2)学校教育教学设施管理不当,存在安全隐患而造成学生伤亡(3)学校违反教育政策、法规,巧立名目乱收费或利用学生进行违法性营利活动(4)学校的食品卫生存在隐患致
动物每年的迁徙都是_______的,但这就是一个优胜劣汰的自然过程。在“职场动物园”也一样,你的存在是因为被需要、具有价值,如果一个人成为团队的_______,即使团队威员竭力保护你,也难保不会被虎视眈眈的鳄鱼_______。因此,独立、自强、强烈的生存意
下列关于RPR技术的描述中,错误的是()。
Weexploredthepossibilityofclosertradelinksattheconference.
【B1】【B2】
AgrowingnumberofAmericansarebuyingsecond-handclothes.
最新回复
(
0
)