首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A、B均为n阶矩阵,且AB=A-B,A有n个互不相同的特征值λ1,λ2,…,λn,证明: (1)λi≠-1(i=1,2,…,n); (2)AB=BA; (3)A的特征向量都是B的特征向量; (4)B可相似对角化.
设A、B均为n阶矩阵,且AB=A-B,A有n个互不相同的特征值λ1,λ2,…,λn,证明: (1)λi≠-1(i=1,2,…,n); (2)AB=BA; (3)A的特征向量都是B的特征向量; (4)B可相似对角化.
admin
2018-08-02
45
问题
设A、B均为n阶矩阵,且AB=A-B,A有n个互不相同的特征值λ
1
,λ
2
,…,λ
n
,证明:
(1)λ
i
≠-1(i=1,2,…,n);
(2)AB=BA;
(3)A的特征向量都是B的特征向量;
(4)B可相似对角化.
选项
答案
(1)即证|-E-A|≠0,或|E+A|≠0或E+A可逆,这可由AB=A-B[*](A+E)(E-B)=E,[*]A+E可逆,且(A+E)
-1
=E-B. (2)由(1)的(A+E)
-1
=E-B,[*](A+E)(E-B)=(E-B)(A+E),即A-AB+E-B=A+E-BA-B,[*]AB=BA. (3)设x为A的属于特征值λ
i
的特征向量,则Ax=λ
i
x,两端左乘B,并利用BA=AB,得A(Bx)=λ
i
(Bx),若Bx≠0,则Bx亦为A的属于λ
i
的特征向量,因属于λ
i
的特征子空间是一维的,故存在常数μ,使Bx=μx,因此x也是B的特征向量;若Bx=0,则Bx=0x,x也是B的属于特征值0的特征向量. (4)由条件知A有n个线性无关的特征向量,于是由(3)知B也有n个线性无关的特征向量,故B相似于对角矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/11j4777K
0
考研数学二
相关试题推荐
设A为可逆的实对称矩阵,则二次型XTAX与XTA-1X().
设z=f(exsiny,x2+y2),且f(u,v)二阶连续可偏导,求
曲线r=eθ在θ=π/2处的切线方程为_______·
设y=ex为微分方程xy’+P(x)y=x的解,求此微分方程满足初始条件y(ln2)=0的特解.
求微分方程y"+4y’+4y=0的通解.
求椭圆所围成的公共部分的面积.
设φ(x)=∫0x(x-t)2f(t)dt,求φ"’(x),其中f(x)为连续函数
设f(x)∈C[a,b],在(a,b)内二阶可导,且f"(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫abφ(x)dx=1.证明:∫abf(x)φ(x)dx≥f[∫abxφ(x)dx].
求f(x,y)=x+xy一x2一y2在闭区域D={(x,y)|0≤x≤1,0≤y≤2)上的最大值和最小值.
设随机变量X在1,2,3,4四个数字中等可能取值,随机变量Y在1~X中等可能地取一整数值.(1)求(X,Y)的概率分布;(2)P{X=Y}.
随机试题
患者男,15岁。因寒战、高热、鼻出血、口腔溃疡3天来诊。查体:全身皮肤可见散在的出血点;浅表淋巴结无肿大,胸骨无压痛,肝脾未触及。检测WBC1.1×109/L,中性粒细胞0.15,淋巴细胞0.85,Hb100g/L,PLT11×109/L,网织红细胞0.0
患者用药后饥饿感增强,出汗,心跳加快,焦虑,未给以重视,当晚即昏迷,考虑是
A.胆红素-白蛋白B.胆红素葡萄糖醛酸酯C.胆红素-Y蛋白D.胆素原(尿胆原)E.胆红素阴离子血中胆红素主要运输形式是
与产后出血无关的是()。
下列选项中,属于流动资产的有()。
下列有关债权申报的表述中,符合《企业破产法》规定的有()。
A、TRUEB、FALSEA
Nowadaysalmosteverycityhasanairport,【C1】______two,inthecaseofsomebigcities.Likearailwaystation,anairportisa
HowtoBuildaWinningTeamWinningisaboutleadingyourpeople.Andaboutleadingtheminfourveryspecificways.If
HavingKidsMakesYouHappy?[A]WhenIwasgrowingup,ourformerneighbors,whomwe’llcalltheSloans,weretheonlycoupleon
最新回复
(
0
)