首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2005年] 如图所示,曲线C的方程为y=f(x),点(3,2)是它的一个拐点,直线l1与l2分别是曲线C在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数f(x)具有三阶连续导数,计算定积分∫03(x2+x)f’’’(x)dx.
[2005年] 如图所示,曲线C的方程为y=f(x),点(3,2)是它的一个拐点,直线l1与l2分别是曲线C在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数f(x)具有三阶连续导数,计算定积分∫03(x2+x)f’’’(x)dx.
admin
2019-04-08
74
问题
[2005年] 如图所示,曲线C的方程为y=f(x),点(3,2)是它的一个拐点,直线l
1
与l
2
分别是曲线C在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数f(x)具有三阶连续导数,计算定积分∫
0
3
(x
2
+x)f’’’(x)dx.
选项
答案
先从图中获取计算积分所需的数据: f(3)=2,f(0)=0.从图中还可求出曲线y=f(x)在点(0,0)与(3,2)处的切线斜率: f’(0)=(4—0)/(2-0)=2, f’(3)=一(2—0)/(4—3)=-2. 由点(3,2)是y=f(x)的拐点知,f’’(3)=0(拐点的必要条件). 因被积函数含函数的导数,下面用分部积分法求其值. ∫
0
3
(x
2
+x)f’’’(x)dx=(x
2
+x)f’’(x)|
0
3
-∫
0
3
(2x+1)f’’(x)dx =∫
0
3
(2x+1)f’’(x)dx=一(2x+1)f’(x)|
0
3
+2∫
0
3
f’(x)dx =一[7×(-2)一2]+2∫
0
3
f’(x)dx=16+2f(x)|
0
3
=16+4=20.
解析
转载请注明原文地址:https://kaotiyun.com/show/hx04777K
0
考研数学一
相关试题推荐
设α1,α2,…,αs均为n维列向量,A是m×n矩阵,下列选项正确的是()
设总体X的概率密度为其中θ是未知参数(0<θ<1),X1,X2,…,Xn为来自总体X的简单随机样本,记N为样本值x1,x2,…,xn中小于1的个数,求θ的最大似然估计。
设二维随机变量(X,Y)的概率密度为则P{X+Y≤1}=________。
设φ(x)有连续二阶导数,且φ(0)=φ’(0)=0,du=yφ(x)dx+[sinx一φ’(x)]dy,试求u(x,y).
,求a,b及可逆矩阵P,使得P-1AP=B;
设X1,X2,…,X12是取自总体X的一个简单随机样本,EX=μ,DX=σ.记Y1=X1+…+X8,Y2=X5+…+X12,求Y1与Y2的相关系数.
(2015年)设函数f(x)在定义域I上的导数大于零.若对任意的x0∈I,曲线y=f(x)在点(x0,f(x0))处的切线与直线x=x0及x轴所围成区域的面积恒为4,且f(0)=2,求f(x)的表达式.
[2001年]设随机变量X的概率密度为对X独立地重复观察4次,用Y表示观察值大于π/3的次数,求Y2的数学期望.
[2015年]设是二阶常系数非齐次线性微分方程y’’+ay’+by=cex的一个特解,则().
[2001年]设y=f(x)在(一1,1)内具有二阶连续导数,且f’’(x)≠0.试证:对于(一1,1)内任一x≠0,存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf’(θx)成立;
随机试题
A.伸膝障碍B.踝背伸、外翻功能障碍C.踝跖屈、内翻功能障碍D.伸踝障碍E.足趾跖屈障碍胫神经损伤
水蛭与虻虫均具有的功效是
注意衰退包括()等表现。
接力跑比赛中,一名运动员在完成交接棒时身体在接力区外,棒在里,可以判运动员犯规。()
2017年二季度与三季度相比较,三季度销售额约增长了:
A、 B、 C、 D、 B
随着淡水供应已达极限,五大洲50多个国家或许很快就将因争夺水资源而发生冲突,除非他们就如何分享流经国际边界的河流迅速达成协议。目前全球各地都在谈论夺水战争,2001年3月,联合国秘书长安南说,“对淡水的激烈争夺很可能成为未来冲突和战争的根源,美国
A.briefB.entriesC.intoA.beclassified【T1】______fourtypesB.【T2】______formofweblogC.【T3】______onablogare
A.Idon’tknowwhichoneisthebestforhim.B.I’lltakeone.C.yoursonwillenjoyplayingwithit.A:Goodmorning,sir.W
我常常听人说,他想读一点书,苦于没有时间。我不太同意这种说法。不管他是多么忙,他总不至于忙得一点时间都抽不出来。一天当中如果抽出一小时来读书,一年就有365小时,十年就有3650小时,积少成多,无论什么研究都会有惊人的成绩。零碎的时间最可宝贵,但也最容易丢
最新回复
(
0
)