首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知a是常数,且矩阵A=可经初等列变换化为矩阵B=. 求满足AP=B的可逆矩阵P.
已知a是常数,且矩阵A=可经初等列变换化为矩阵B=. 求满足AP=B的可逆矩阵P.
admin
2022-09-22
120
问题
已知a是常数,且矩阵A=
可经初等列变换化为矩阵B=
.
求满足AP=B的可逆矩阵P.
选项
答案
求满足AP=B的可逆矩阵P,即求方程组Ax=B的解. (A,B)=[*] 令P=(ξ
1
,ξ
2
,ξ
3
),B=(β
1
,β
2
,β
3
),x=(x
1
,x
2
,x
3
), 则可得方程组Ax
1
=β
1
的基础解系为(-6,2,1)
T
,特解为(3,-1,0)
T
; 得方程组Ax
2
=β
2
的基础解系为(-6,2,1)
T
,特解为(4,-1,0)
T
; 得方程组Ax
3
=β
3
的基础解系为(-6,2,1)
T
,特解为(4,-1,0)
T
. 从而可知三个非齐次方程组的通解为 ξ
1
=x
1
=k
1
(-6,2,1)
T
+(3,-1,0)
T
; ξ
2
=x
2
=k
2
(-6,2,1)
T
+(4,-1,0)
T
; ξ
3
=x
3
=k
3
(-6,2,1)
T
+(4,-1,0)
T
. 因此 P=(ξ
1
,ξ
2
,ξ
3
)=[*] 由P为可逆矩阵,即|P|≠0,可知k
2
≠k
3
.因此 P=[*],k
1
,k
2
,k
3
为任意常数,且k
2
≠k
3
.
解析
转载请注明原文地址:https://kaotiyun.com/show/hxf4777K
0
考研数学二
相关试题推荐
已知α1,α2,α3,α4是齐次方程组AX=0的基础解系,记β1=α1+tα2,β2=α2+tα3,β3=α3+tα4,β4=α4+tα1.实数t=_______时,β1,β2,β3,β4,也是AX=0的基础解系?
求函数z=3aχy-χ3-y3(a>0)的极值______.
若二阶常系数齐次线性微分方程y’’+ay’+by=0的通解为y=(C1+C2x)ex,则非齐次方程y’’+ay’+by=戈满足条件y(0)=2,y’(0)=0的特解为y=____________。
设α1,α2,α3,α4,α5,它们的下列部分组中,是最大无关组的有________?(1)α1,α2,α3.(2)α1,α2,α4.(3)α1,α2,α5.(4)α1,α3,α4.
设A,B均为n阶矩阵,且|A|=2,|B|=一3,则|2A*B-1|=____________.
若f(x)=是(-∞,+∞)上的连续函数,则a=_______.
确定常数0,使向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(-2,a,4)T,β3=(-2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示.
求极限:.
证明对于任何m×n实矩阵A,ATA的负惯性指数为0.如果A秩为n,则ATA是正定矩阵.
二次型f(x1,x2,x3)=(x1+3x2+ax3)(x1+5x2+bx31)的负惯性指数等于().
随机试题
“浅慢—深快—浅慢—暂停”周期性变化的呼吸是()
患者,男,38岁,颅脑创伤,住院后患者的卧位是抬高床头15~30cm,其目的是
男性,42岁,近2个月有脓血便。腹部体检未见阳性体征。直肠指诊可及一肿物下缘,质较硬,指套带血。最可能的疾病为
用于伤寒治疗的药物包括()。
抗震规范规定了有抗震设防要求的钢筋混凝土结构高层建筑柱子轴压比限值。这是为了()。
只有当社会总需求恰好等于国民收入时,国民收入才处于均衡状态。()
《乌托邦》的作者是英国政治家()。
设{un},{cn}为正项数列,证明:(1)若对一切正整数n满足cnun-cn+1un+1≤0,且也发散;(2)若对一切正整数n满足cn(un/un+1)-cn+1≥a(a>0),且也收敛.
HowwillthewomangotoGeorgiaforherholiday?
A、preventpeoplefromhavingtroublewithteethB、stopteethfromfallingoutC、putmenonthemoonD、transplantheartsandothe
最新回复
(
0
)