首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上二阶可导,且f"(x)>0,取xi∈[a,b](i=1,2,…,,2)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1.证明: f(k1x1+k2x2+…+knxn)≤k1f(x1)+k2f(x2)+…+knf
设f(x)在[a,b]上二阶可导,且f"(x)>0,取xi∈[a,b](i=1,2,…,,2)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1.证明: f(k1x1+k2x2+…+knxn)≤k1f(x1)+k2f(x2)+…+knf
admin
2019-01-05
48
问题
设f(x)在[a,b]上二阶可导,且f"(x)>0,取x
i
∈[a,b](i=1,2,…,,2)及k
i
>0(i=1,2,…,n)且满足k
1
+k
2
+…+k
n
=1.证明:
f(k
1
x
1
+k
2
x
2
+…+k
n
x
n
)≤k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
).
选项
答案
令x
0
=k
1
x
1
+k
2
x
2
+…+k
n
x
n
,显然x
0
∈[a,b]. 因为f"(x)>0,所以f(z)≥f(x
0
)+f’(x
0
)(x—x
0
), 分别取x=x
i
(i=1,2,…,n),得 [*] 将上述各式分别相加,得f(x
0
)≤k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
),即 f(k
1
x
1
+k
2
x
2
+…+k
n
x
n
)≤k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
).
解析
转载请注明原文地址:https://kaotiyun.com/show/i4W4777K
0
考研数学三
相关试题推荐
设二次型f(x1,x2,x3)=2x12-x22+ax32+2x1x2-8x1x3+2x2x3在正交变换x=Qy下的标准型为λ1y12+λ2y22,求a的值及一个正交矩阵Q.
设a0=1,a1=0,an+1=(nan+an-1)(n=1,2,3…),S(x)为幂级数anxn的和函数.证明anxn的收敛半径不小于1:
设随机变量X的分布函数为F(x)=0.2F1(x)+0.8F1(2x),其中F1(y)是服从参数为1的指数分布的随机变量的分布函数,则D(X)为().
微分方程y’’一3y’+2y=2ex满足的特解为_________.
设X1,X2,X3,…,Xn是来自正态总体N(μ,σ2)的简单随机变量,X是样本均值,记S1=.则服从自由度为n-1的t分布的随机变量为().
设A为三阶实对称矩阵,为方程组AN=0的解,为方程组(2E—A)X=0的一个解,|E+A|=0,则A=___________.
设f(x)在[a,b]上连续,在(a,b)内可导.证明:存在ξ,η∈(a,b),使得
转化为适当的函数极限.令[*],则[*]
设随机变量X的概率密度为若k满足概率等式则k的取值范围是__________.
已知非齐次线性方程组有3个线性无关的解.(1)证明方程组系数矩阵A的秩r(A)=2;(2)求a,b的值及方程组的通解.
随机试题
心肌抑制因子(myocardialdepressantfactor,MDF)
为防止高频电磁场,或高频无线电波的干扰,也为防止电磁场耦合和电磁场辐射,通常采用()。
在掀起额冠状皮瓣的颞部时,在分离下列哪一层次时面神经的额支最易受到损伤
下列体表标志组合,错误的是
肺痈溃脓期,于辨证方中加入山甲片、皂角刺的解释是()
(2013年)离心泵工况点是()的交点。
A、B、C、D等20人拟共同出资设立甲有限责任公司(下称甲公司)。股东共同制订了公司章程。在公司章程中,对董事任期、监事会组成、股权转让规则等事项做了如下规定:(1)甲公司董事任期为4年;(2)甲公司设立监事会,监事会成员为7人,其中包
实物直观一般比模象直观教学效果好。()
下面哪一种动物是两栖动物?()
SQL通常不提供下列哪一种操作?
最新回复
(
0
)