首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上二阶可导,且f"(x)>0,取xi∈[a,b](i=1,2,…,,2)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1.证明: f(k1x1+k2x2+…+knxn)≤k1f(x1)+k2f(x2)+…+knf
设f(x)在[a,b]上二阶可导,且f"(x)>0,取xi∈[a,b](i=1,2,…,,2)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1.证明: f(k1x1+k2x2+…+knxn)≤k1f(x1)+k2f(x2)+…+knf
admin
2019-01-05
53
问题
设f(x)在[a,b]上二阶可导,且f"(x)>0,取x
i
∈[a,b](i=1,2,…,,2)及k
i
>0(i=1,2,…,n)且满足k
1
+k
2
+…+k
n
=1.证明:
f(k
1
x
1
+k
2
x
2
+…+k
n
x
n
)≤k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
).
选项
答案
令x
0
=k
1
x
1
+k
2
x
2
+…+k
n
x
n
,显然x
0
∈[a,b]. 因为f"(x)>0,所以f(z)≥f(x
0
)+f’(x
0
)(x—x
0
), 分别取x=x
i
(i=1,2,…,n),得 [*] 将上述各式分别相加,得f(x
0
)≤k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
),即 f(k
1
x
1
+k
2
x
2
+…+k
n
x
n
)≤k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
).
解析
转载请注明原文地址:https://kaotiyun.com/show/i4W4777K
0
考研数学三
相关试题推荐
设,B为三阶非零矩阵,的解向量,AX=a3有解.(1)求常数a,b.(Ⅱ)求BX=0的通解.
设A为三阶实对称矩阵,若存在正交矩阵Q,使得且A*α=α.(I)求正交矩阵Q;(Ⅱ)求矩阵A.
设X1,X2,X3,…,Xn是来自正态总体N(μ,σ2)的简单随机变量,X是样本均值,记S1=.则服从自由度为n-1的t分布的随机变量为().
设z=z(x,y)二阶连续可偏导且满足方程在变换下,原方程化为求a,b的值.
设A为三阶矩阵,特征值为λ1=λ2=1,λ3=2,其对应的线性无关的特征向量为α1,α2,α3,令P=(α1一α3,α2+α3,α3),则P1一1A*P1=().
设某一设备由三大部件构成,设备运转时,各部件需调整的概率分别为0.1,0.2,0.3,若各部件的状态相互独立,求同时需调整的部件数X的分布函数.
已知(axy3一y2cosx)dx+(1+bysinx+3x2y2)dy为某二元函数f(x,y)的全微分,则常数
(96年)求微分方程的通解.
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是
若三阶实对称矩阵A的特征值是1,5,5,则秩r(5E—A)=__________.
随机试题
关于万古霉素注射剂叙述不正确的是()
清末修律中,正式公布的法律有:
下列各项资产中,不能够产生独立的现金流量的有()。
根据企业所得税法律制度的规定,下列各项中,准予在企业所得税税前扣除的是()。
研究人员把受试者分成两组:A组做十分钟自己的事情,但不从事会导致说谎行为的事:B组被要求偷拿考卷,并且在测试时说谎。之后,研究人员让受试者戴上特制电极,以记录被询问的眨眼频率。结果发现,A组眨眼频率会微微上升,但B组的眨眼频率先是下降,然后大幅上升至一般频
我国刑事强制工作的基本依据是()。
封闭式基金募集期限是()。
三个随机及其的方差分析适用于()。
WhyisPetersopleased?
Theoriginoflanguage______.Thesecretofawriter’ssuccessistheuseofwordsthat______.
最新回复
(
0
)