首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上二阶可导,且f"(x)>0,取xi∈[a,b](i=1,2,…,,2)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1.证明: f(k1x1+k2x2+…+knxn)≤k1f(x1)+k2f(x2)+…+knf
设f(x)在[a,b]上二阶可导,且f"(x)>0,取xi∈[a,b](i=1,2,…,,2)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1.证明: f(k1x1+k2x2+…+knxn)≤k1f(x1)+k2f(x2)+…+knf
admin
2019-01-05
67
问题
设f(x)在[a,b]上二阶可导,且f"(x)>0,取x
i
∈[a,b](i=1,2,…,,2)及k
i
>0(i=1,2,…,n)且满足k
1
+k
2
+…+k
n
=1.证明:
f(k
1
x
1
+k
2
x
2
+…+k
n
x
n
)≤k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
).
选项
答案
令x
0
=k
1
x
1
+k
2
x
2
+…+k
n
x
n
,显然x
0
∈[a,b]. 因为f"(x)>0,所以f(z)≥f(x
0
)+f’(x
0
)(x—x
0
), 分别取x=x
i
(i=1,2,…,n),得 [*] 将上述各式分别相加,得f(x
0
)≤k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
),即 f(k
1
x
1
+k
2
x
2
+…+k
n
x
n
)≤k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
).
解析
转载请注明原文地址:https://kaotiyun.com/show/i4W4777K
0
考研数学三
相关试题推荐
某商品产量关于价格p的函数为Q=75一p2,求:当p=4时的需求价格弹性,说明其经济意义;
设A为三阶实对称矩阵,α1=(m,一m,1)T是方程组AX=0的解,α2=(m,1,1一m)T是方程组(A+E)X=0的解,则m=_________.
设二次型f(x1,x2,x3)=x12+x22+x32一2x1x2一2x1x3+2ax2x3(a<0)通过正交变换化为标准形2y12+2y22+by32.求常数a,b的值;
设随机变量X服从(0,1)上的均匀分布,求下列函数的密度函数:(I)Y1=eX;(Ⅱ)Y2=一2lnX;(Ⅲ)(Ⅳ)Y4=X2.
求使得不等式在区域D=|(x,y)|x>0,y>0|内成立的最小正数A与最大负数B.
设由曲线与直线y=a(其中常数a满足0<a<1)以及x=0,x=1围成的平面图形(如右图的阴影部分)绕y轴旋转一周所得旋转体的体积为V(a),求V(a)的最小值与最小值点.
设常数a>0,求∫arcsin.
已知齐次方程组(I)解都满足方程x1+x2+x3=0,求a和方程组的通解.
x4.先把第2,3,4列都加到第1列并提出第1列的公因子x,再将第1列的1倍、(-1)倍、1倍分别加至第2,3,4列,然后按第4行展开.
随机试题
A.先兆流产B.难免流产C.稽留流产D.完全流产E.不全流产容易发生失血性休克的是()
简述动物致人损害的民事责任的构成要件。
A.贫血重而出血轻B.贫血与出血相一致C.贫血轻而出血重D.有贫血而无出血E.无贫血而有皮下出血特发性血小板减少性紫癜
兴奋性是指
()的安置属于安全宣传教育措施的范围。
(江西2012—36)1,5,13,25,41,()
HBO电视台的重头科幻剧《西部世界》(“Westworld”)已经播完第一季,随着该剧的热播和走红,越来越多演员争相在戏中出演角色。据外媒报道,安东尼、埃文和艾德这三个名字将至少有一个出现在第二季的演员阵容中。最终谁会入选,原作者表示将尊重该剧官网发起的角
设n阶矩阵A=[aij],若则A的所有特征值λi(i=1,2,…,n)的模小于1,即|λi|<1.
WhenyouthinkoftheInternet,youprobablythinkof“.com.”Justwhatdothose。threelettersattheendofaWorldWideWebaddre
NamesinAmericaMostparentsintheUnitedStatesgivetheir【T1】______afirst,middleandlastnamewhentheyareborn.The
最新回复
(
0
)