首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设积分区域D={(x,y)|0≤x≤y≤2π},计算二重积分I=|sin(y-x)|dσ.
设积分区域D={(x,y)|0≤x≤y≤2π},计算二重积分I=|sin(y-x)|dσ.
admin
2018-12-21
34
问题
设积分区域D={(x,y)|0≤x≤y≤2π},计算二重积分I=
|sin(y-x)|dσ.
选项
答案
由于被积函数为|sin(y-x)|,因此要分D为D
1
∪D
2
,如图所示. [*] 其中 D
1
={(x,y)|π≤y-x≤2π,(x,y)∈D}, D
2
={(x,y)|0≤y-x≤π,(x,y)∈D}, 仅当y-x=π((x,y)∈D)时D
1
与D
2
有公共边,不影响积分的值. I=[*]sin(y﹣x)dσ-[*]sin(y﹣x)dσ =[*]sin(y﹣x)dσ+[*]sin(y﹣x)dσ-2[*]sin(y﹣x)dσ =[*]sin(y﹣x)dσ-2[*]sin(y﹣x)dσ =∫
0
2π
dxsin∫
x
2π
(y-x)dy-2∫
0
π
dx∫
x﹢π
2π
sin(y-x)dy =-∫
0
2π
cos(y-x)|
y-x
y-2π
dx﹢2∫
0
π
cos(y-x)|
y-x﹢π
y-2π
dx =-∫
0
2π
(cos x-1)dx﹢2∫
0
π
(cos x﹢1)dx=4π.
解析
转载请注明原文地址:https://kaotiyun.com/show/iAj4777K
0
考研数学二
相关试题推荐
(2011年)设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵.若(1,0,1,0)T是方程组Aχ=0的一个基础解系,则A*χ=0的基础解系可为【】
(2010年)设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示.下列命题正确的是【】
(2012年)证明:χln(-1<χ<1).
(2015年)设函数y=y(χ)是微分方程y〞+y′-2y=0的解,且在χ=0处y(χ)取得极值3,则y(χ)=_______.
(2002年)设0<χ1<3,χn+1=(n=1,2,…),证明数列{χn}的极限存在,并求此极限.
(1991年)若连续函数f(χ)满足关系式f(χ)=∫02χf()dt+ln2则f(χ)等于
给出如下5个命题:(1)若不恒为常数的函数f(x)在(一∞,+∞)内有定义,且x0≠0是f(x)的极大值点,则一x0必是一f(一x)的极大值点;(2)设函数f(x)在[a,+∞)上连续,f"(x)在(a,+∞)内存在且大于零,则F(x)
已知齐次方程组为其中ai≠0.(1)讨论a1,a2,…,an和b满足何种关系时方程组有非零解;(2)在方程组有非零解时,写出一个基础解系.
设m,n均是正整数,则反常积分的收敛性()
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b一a).(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f+’(0
随机试题
消化道主要包括口腔、食道、胃、小肠和大肠。()
患痫病者不易从事何类工作
下列哪项会造成生理性多尿
患者,女性,25岁。左侧头部着地摔伤,曾出现意识丧失。无头痛、呕吐。查体:血压118/72mmHg,脉搏78次/分,呼吸19次/分。神志清醒,对答切题。左耳有血性液体流出。根据目前患者的情况,最重要的治疗是
适用于有一岸具有较宽的台地、垭口或古河道的地形的导流方式是()。
年末,“本年利润”总账贷方余额90000元,“利润分配”总账借方余额:100000元,则年度资产负债表“未分配利润”项目期末数应填列()元。
在教育心理学的研究中,最常用的调查法包括有()
判断级数的敛散性.
Youaregoingtoreadalistofheadingsandatextaboutscience.Choosethemostsuitableheadingfromthelistforeachnumbe
Ibelieveverystronglythatouroverproductionofcheapgrainingeneral,andcorninparticular,hasalottodowiththefact
最新回复
(
0
)