首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2000年)函数f(χ)在[0,+∞]上可导,f(0)=1,且满足等式 f′(χ)+f(χ)-∫0χf(t)dt (1)求导数f′(χ); (2)证明:当χ≥0时,成立不等式:e-χ≤f(χ)≤1.
(2000年)函数f(χ)在[0,+∞]上可导,f(0)=1,且满足等式 f′(χ)+f(χ)-∫0χf(t)dt (1)求导数f′(χ); (2)证明:当χ≥0时,成立不等式:e-χ≤f(χ)≤1.
admin
2016-05-30
83
问题
(2000年)函数f(χ)在[0,+∞]上可导,f(0)=1,且满足等式
f′(χ)+f(χ)-
∫
0
χ
f(t)dt
(1)求导数f′(χ);
(2)证明:当χ≥0时,成立不等式:e
-χ
≤f(χ)≤1.
选项
答案
(1)由题设知 (χ+1)f′(χ)+(χ+1)f(χ)-∫
0
χ
f(t)dt=0 上式两边对χ求导,得(χ+1)f〞(χ)=-(χ+2)f′(χ) 设u=f′(χ)则有[*] 解得f′(χ)=u=[*] 由f(0)=1,及f′(0)+f(0)=0,知f′(0)=-1,从而C=-1. 因此f′(χ)=[*] (2)当χ≥0时,f′(χ)<0,即f(χ)单调减少,又f(0)=1,所以f(χ)≤f(0)=1 设φ(χ)=f(χ)-e
-χ
则φ(0)=0,φ′(χ)≥0,即φ(χ)单调增加,因而 φ(χ)≥φ(0)=0,即有f(χ)≥e
-χ
综上所述,当χ≥0时,成立不等式e
-χ
≤f(χ)≤1
解析
转载请注明原文地址:https://kaotiyun.com/show/h734777K
0
考研数学二
相关试题推荐
设f(x)为连续函数,并设∫01f(tx)dt=f(x)+xsinx,求f(x).
设数列{an)满足a1=a2=1,且an+1=an+an-1,n=2,3,….证明当|x|<1/2时,级数anxn-1收敛,并求其和函数及系数an.
计算曲线积分I=∮Lydx+zdy+zdz,其中L是球面x2+y2+z2=R2与平面x+z=R的交线,方向由(R,0,0)出发,先经过x>0,y>0部分,再经过x>0,y<0部分回到出发点.
计算曲面积分I=(2x+z)dydz+zdxdy,其中∑为有向曲面z=x2+y2(0≤z≤1),并且其法向量与z轴正向夹角为锐角.
设函数f(x)在(-∞,+∞)内具有一阶连续导数,L是上半平面(y>0)内的有向光滑曲线,其起点为点(a,b),终点为点(c,d),记证明:曲线积分I与路径L无关;
设f(x),g(x)是连续函数,当x→0时,f(x)与g(x)是等价无穷小,令F(x)=∫0xf(x-t)dt,G(x)=|xg(xt)dt,则当x→0时,F(x)是G(x)的().
设则当x→0时,两个无穷小的关系是().
若在x=1处连续,求a的值。
设f(x)有连续的导数,f(0)=0,f’(0)≠0,F(x)=∫0x(x2-t2)f(t)dt且当x→0时,F’(x)与xk是同阶无穷小,则k=________。
(2003年)设三阶方阵A、B满足A2B-A-B=E,其中E为三阶单位矩阵,A=,则|B|=_______.
随机试题
梁某与好友强某深夜在酒吧喝酒。强某醉酒后,钱包从裤袋里掉到地上,梁某拾后见钱包里有5000元现金就将其隐匿。强某要梁某送其回家,梁某怕钱包之事被发现,托辞拒绝。强某在回家途中醉倒在地,被人发现时已冻死。关于本案,下列哪些选项是正确的?()(2007
异烟肼和利福平长期联合应用可能引起
关于抗毒素的描述,下列哪一项是正确的
男性,30岁。11月中旬发病,发热,全身痛,尿少,入院时发病5天。查体可见面部充血,结膜出血,皮下可见瘀点、瘀斑,经化验检查,最后确诊为肾综合征出血热。哪一脏器的出血危险性最大
在存在潜在利益冲突的情形下,应当向所在机构管理层主动说明利益冲突情况,以及处理利益冲突的建议。()
净现值指标的缺点有()。
恩格斯在谈到资本主义国家职能时指出,“政治统治到处都是以执行某种社会职能为基础”。这就是说()。
下列选项中,不属于数据库管理的是()。
下列关于INSERT语句功能的描述中,正确的是
-Howlongareyoustaying?-Idon’tknow.______.
最新回复
(
0
)