首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2000年)函数f(χ)在[0,+∞]上可导,f(0)=1,且满足等式 f′(χ)+f(χ)-∫0χf(t)dt (1)求导数f′(χ); (2)证明:当χ≥0时,成立不等式:e-χ≤f(χ)≤1.
(2000年)函数f(χ)在[0,+∞]上可导,f(0)=1,且满足等式 f′(χ)+f(χ)-∫0χf(t)dt (1)求导数f′(χ); (2)证明:当χ≥0时,成立不等式:e-χ≤f(χ)≤1.
admin
2016-05-30
56
问题
(2000年)函数f(χ)在[0,+∞]上可导,f(0)=1,且满足等式
f′(χ)+f(χ)-
∫
0
χ
f(t)dt
(1)求导数f′(χ);
(2)证明:当χ≥0时,成立不等式:e
-χ
≤f(χ)≤1.
选项
答案
(1)由题设知 (χ+1)f′(χ)+(χ+1)f(χ)-∫
0
χ
f(t)dt=0 上式两边对χ求导,得(χ+1)f〞(χ)=-(χ+2)f′(χ) 设u=f′(χ)则有[*] 解得f′(χ)=u=[*] 由f(0)=1,及f′(0)+f(0)=0,知f′(0)=-1,从而C=-1. 因此f′(χ)=[*] (2)当χ≥0时,f′(χ)<0,即f(χ)单调减少,又f(0)=1,所以f(χ)≤f(0)=1 设φ(χ)=f(χ)-e
-χ
则φ(0)=0,φ′(χ)≥0,即φ(χ)单调增加,因而 φ(χ)≥φ(0)=0,即有f(χ)≥e
-χ
综上所述,当χ≥0时,成立不等式e
-χ
≤f(χ)≤1
解析
转载请注明原文地址:https://kaotiyun.com/show/h734777K
0
考研数学二
相关试题推荐
(Ⅰ)设n维向量α1,α2,α3,α4线性无关.βi=αi+tα4(i=1,2,3),证明:β1,β2,β3对任意t都线性无关;(Ⅱ)设n维向量α1,α2,α3,α4满足=0,βi=αi+iλiξ,i=1,2,3,4,问λi(i=1,2,3,4)
设生产某产品的固定成本为10,而当产量为x时的边际成本函数为MC=-40-20x+3x2,边际收益函数为MR=32+10x,则总利润函数L(x)=________.
设f(x)二阶可导,且f″(x)≥0,u(t)为任一连续函数;a>0,求证:
设D是曲线y=x4-x3的凸弧段部分与x轴形成的曲边三角形,则=________。
使函数f(x)=x3+ax+b在区间(一∞,+∞)内只有一个零点x0(且x0<0)的常数a、b的取值范围是
求下列函数的极限.
求极限.
(2000年试题,二)设函数f(x)满足关系式f’’(x)+[f’(x)]2=x,且f’(0)=0,则().
(2002年试题,十一)已知A,B为三阶矩阵,且满足2A-1B=B-4E,其中E是三阶单位矩阵.(1)证明:矩阵A-2E可逆;(2)若求矩阵A.
(2003年)设函数f(χ)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f′(χ)>0.若极限存在.证明:(1)在(a,b)内f(χ)>0;(2)在(a,b)内存在点ξ,使(3)在(a,b)内存在与(2)中ξ相异的点
随机试题
计算机辅助设计简称为__________,计算机辅助制造简称为__________。
执行语句for(k=2;++k
A腹泻、呕吐B严重贫血、多尿、夜尿等,并伴有部分尿毒症中毒的症状C黄疸、出血、继发性感染、肾功能障碍等一系列临床综合征状D意识障碍E认知功能的损伤慢性肾衰竭出现
局部义齿固位体的数量一般为
A.评价抽检B.指定检验C.注册检验D.监督抽检每批生物制品出厂上市前,进行的强制性检验属于
下列关于y2分布的表述,正确的是()
2007年10月4日,个体户李文斌欲开办一饮食店,因资金不足与孙占武协商签订了一份借款协议,约定向孙占武借款4000元,借款期为9个月,利息为银行存款利率的2倍。协议同时约定由李文斌将一架高档电子琴交给孙占武作为担保。合同签订后,孙占武要李文斌带上电子琴
Cisco路由器第3模块第1端口通过E1标准的DDN专线与一台远程路由器相连,端口的IP地址为195.112.41.81/30,远程路由器端口封装PPP协议。下列路由器的端口配置,正确的是()。
Therelationshipbetweenhusbandsandwivesisoneofthestrongestbondsinoursociety.Itisdeep,passionate,andoften【C1】_
A、Trouble.B、Youthfulfeeling.C、Companionship.D、Pressure.B短义提到,交换生使老年人感到年轻,所以给他们带来的是年轻的感受,故B为答案。
最新回复
(
0
)