首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶非零矩阵,且A2=A,r(A)=r(0<r<n).求|5E+A|.
设A为n阶非零矩阵,且A2=A,r(A)=r(0<r<n).求|5E+A|.
admin
2018-05-21
82
问题
设A为n阶非零矩阵,且A
2
=A,r(A)=r(0<r<n).求|5E+A|.
选项
答案
因为A
2
=A[*]A(E-A)=O[*]r(A)+r(E-A)=n[*]A可以对角化. 由A
2
=A,得|A|.|E-A|=0,所以矩阵A的特征值为λ=0或1. 因为r(A)=r且0<r<n,所以0和1都为A的特征值,且λ=1为r重特征值,λ=0为n-r重特征值, 所以5E+A的特征值为λ=6(r重),λ=5(n-r重),故|5E+A|=5
n-r
×6
r
.
解析
转载请注明原文地址:https://kaotiyun.com/show/Epr4777K
0
考研数学一
相关试题推荐
已知线性方程组Ax=kβ1+β2有解,其中则k=()
已知(1,一1,0)T是二次型xTAx=αx12+x32一2x1x2+2x1x3+2bx2x3的矩阵A的特征向量,利用正交变换化二次型为标准形,并写出所用的正交变换和对应的正交矩阵。
A、P1P3AB、P2P3AC、AP3P2D、AP1P3B矩阵A作两次行变换可得到矩阵B,而AP3P2和AP1P3是对矩阵A作列变换,故应排除C,D。把矩阵A的第1行的2倍加至第3行,再将1,2两行互换得到矩阵B;或者把矩阵A的1,2两行互换后,再
设α1,α2,α3,α4,α5都是四维列向量,A=(α1,α2,α3,α4),非齐次线性方程组Ax=α5,有通解kξ+η=k(1,一1,2,0)T+(2,1,0,1)T,则下列关系式中不正确的是()
设物体在高空中垂直下落,初速度为零,下落过程中所受空气阻力与下落速度的平方成正比,阻力系数k>0。证明下落速度不会超过
设y=e3x(C1cosx+C2sinx)(C1,C2为任意常数)为某二阶常系数齐次线性微分方程的通解,则该方程为________。
设y1=ex一e一xsin2x,y2=e一x+e一Xcos2x是某二阶常系数非齐次线性方程的两个解,则该方程是________.
设,若存在秩大于1的三阶矩阵B使得BA=0,则An=________.
设矩阵A=,已知A的特征值之和为4,且某个特征值为2.求a,b的值。
设3阶矩阵A与B相似,λ1=1,λ2=-2是矩阵A的两个特征值,且矩阵B的行列式|B|=1,则行列式|A*+E|=________.
随机试题
(2012年第56题)甲状腺癌中,一般只从血行转移的是
关于阑尾黏液囊肿的说法错误的是
患者,女,40岁。双手近端指间关节痛2个月,晨僵,有时肿,伴不规则低热。体检面部及躯干有红斑或皮疹,双手近端指间关节有压痛,肿不明显,无畸形。X线检查无明显改变。血白细胞3.5×109/L,血小板72×109/L,尿蛋白30mg/dl,血沉32mm/第1小
颌顶位又称为
下列关于学习动机的激发手段表述正确的是()。
山东被称为“齐鲁之邦"或简称“鲁”,“鲁”字源于西周时期()的分封地鲁国。
在辞书的编纂过程中,存在所谓“共识”问题。因而做出完全相同的释义是可能的,但也是有限度的,绝不能用所谓的“共识”给自己的抄袭行为开脱。这段话支持了这样一种观点,即在辞书编纂过程中,()。
以下项目中,不应计人“营业外支出”科目的是()。
关于ARP表,以下描述中正确的是______。
YouwillhearaconversationbetweenMissGreen,aneducationaljournalist,andProfessorWilson,anexpertineducationalstudi
最新回复
(
0
)