首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs和β1,β2,…,βt为两个n维向量组,且秩(α1,α2,…,αs)=秩(β1,β2,…,βt)=r,则( ).
设α1,α2,…,αs和β1,β2,…,βt为两个n维向量组,且秩(α1,α2,…,αs)=秩(β1,β2,…,βt)=r,则( ).
admin
2020-09-25
53
问题
设α
1
,α
2
,…,α
s
和β
1
,β
2
,…,β
t
为两个n维向量组,且秩(α
1
,α
2
,…,α
s
)=秩(β
1
,β
2
,…,β
t
)=r,则( ).
选项
A、两个向量组等价
B、当s=t时,两个向量组等价
C、秩(α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
t
)=r
D、当α
1
,α
2
,…,α
s
被β
1
,β
2
,…,β
t
线性表示时,β
1
,β
2
,…,β
t
也可被α
1
,α
2
,…,α
s
线性表示
答案
D
解析
记A=(α
1
,α
2
,…,α
s
),B=(β
1
,β
2
,…,β
t
).若α
1
,α
2
,…,α
s
能被β
1
,β
2
,…,β
t
线性表示,则R(B)=R(B,A).又R(A)=R(B)=r,所以R(A)=R(B)=R(B,A).
所以α
1
,α
2
,…,α
s
与β
1
,β
2
,…,β
t
等价,所以β
1
,β
2
,…,β
t
也可被α
1
,α
2
,…,α
s
线性表示.故选D.
转载请注明原文地址:https://kaotiyun.com/show/iJx4777K
0
考研数学三
相关试题推荐
设A,B均为3阶矩阵,且满足AB=2A+B,其中A=,则|B-2E|=_______.
已知α1,α2,α3,β,γ都是4维列向量,且|α1,α2,α3,β|=a,|β+γ,α3,α2,α1|=b,则|2γ,α1,α2,α3|=________.
设4维向量组α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a,3)T,α4=(4,4,4,4+a)T,问a为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
(2014年)设随机变量X的分布为P(X=1)=P(X=2)=,在给定X=i的条件下,随机变量Y服从均匀分布U(0,i),i=1,2。(Ⅰ)求Y的分布函数;(Ⅱ)求期望E(Y)。
(02年)求极限
设随机变量X,Y相互独立,且X的概率分布为P{X=0}=P{X=2}=,Y的概率密度为(Ⅰ)求P{Y≤EY};(Ⅱ)求Z=X+Y的概率密度.
(2016年)设总体X的概率密度为其中θ∈(0,+∞)为未知参数,X1,X2,X3为来自总体X的简单随机样本,T=max{X1,X2,X3}。(Ⅰ)求T的概率密度;(Ⅱ)确定a,使得E(aT)=θ。
(98年)设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0.记n阶矩阵A=αβT.求:(1)A2;(2)矩阵A的特征值和特征向量.
设随机变量X1,X2,…,Xn相互独立,Sn=X1+X2+…+Xn则根据列维一林德伯格中心极限定理,当n充分大时,Sn近似服从正态分布,只要X1,X2,…,Xn().
随机试题
滑雪和滑冰是冬奥会的两大项赛事,其中高山滑雪、自由式滑雪、单板滑雪、跳台滑雪、越野滑雪和北欧两项是滑雪大项中的6个分项,短道速滑、速度滑冰和花样滑冰是滑冰大项中的3个分项。小林打算去现场观看比赛,共选择6个项目,并且每个大项不少于1个,若所有项目比赛时间均
A.腹腔积液比重
臀红是新生儿常见的皮肤病,护士为患儿采取下列哪些措施可有效预防其发生
下列关于期限错配分析的叙述中,有误的一项是()。
信用风险的主要形式包括()。
产品的生命周期包括()阶段。
加德纳的“多元智力理论”是近年来教育界具有影响力的新思想。多元智力理论框架中相对独立地存在着八种智力。其中,在记者、编辑、作家和政治领袖等人身上有比较突出表现的智力是()。
我国古代思想家墨子认为,人的发展犹如白布放进染缸,“染于苍则苍,染于黄则黄。所人者变,其色亦变”。墨子的这种观点属于()。
设是正项级数,下列结论中正确的是().
A、Healwaysstickstohislistofquestions.B、Heoftenfindsintervieweestalkaboutsomethingthathe’snotreallythoughtabo
最新回复
(
0
)