首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)是在[a,b]上连续且严格单调的函数,在(a,b)内可导,且f(a)=a<b=f(b). 证明:存在ξi∈(a,b)(i=1,2,…,n),使得=1.
设f(x)是在[a,b]上连续且严格单调的函数,在(a,b)内可导,且f(a)=a<b=f(b). 证明:存在ξi∈(a,b)(i=1,2,…,n),使得=1.
admin
2020-03-10
97
问题
设f(x)是在[a,b]上连续且严格单调的函数,在(a,b)内可导,且f(a)=a<b=f(b).
证明:存在ξ
i
∈(a,b)(i=1,2,…,n),使得
=1.
选项
答案
令h=[*],因为f(x)在[a,b]上连续且单调增加,且f(a)=a<b=(b), 所以f(a)=a<a+h<…<a+(n-1)h<b=f(b),由端点介值定理和函数单调性, 存在a<c
1
<c
2
<…<c
n-1
<b,使得 f(c
1
)=a+h,f(c
2
)=a+2h,…,f(c
n-1
)=a+(n-1)h,再由微分中值定理,得 f(c
1
)=f(a)=f’(ξ
1
)(c
1
-a),ξ
1
∈(a,c
1
), f(c
2
)-f(c
1
)=f’(ξ
2
)(c
2
-c
1
),ξ
2
∈(c
1
,c
2
),… f(b)-f(c
n-1
)=f’(ξ
n
)(b-c
n-1
),ξ
n
∈(c
n-1
,b), 从而有h[[*]]=b-a[*]=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/iND4777K
0
考研数学三
相关试题推荐
设y=f(x)是微分方程y"一2y’+4y=一esinx的一个解,若f(x0)>0,f’(x0)=0,则函数f(x)在点x0().
设F1(x)与F2(x)分别是随机变量X1与X2的分布函数,为使F(x)=aF1(x)-bF2(x)是某一随机变量的分布函数,在下列给定的各组数值中应取
如图,曲线段的方程为y=f(x),函数f(x)在区间[0,a]上有连续的导数,则定积分等于
设f(x)在区间[2,4]上具有二阶连续导数f’’(x),且f(3)=0,证明存在一点ξ∈(2,4),使得
设f(x)在[0,π]上连续,且,证明f(x)在(0,π)内至少有两个零点。
反常积分=_____________________。
试求函数y=arctanx在x=0处的各阶导数。
已知r(a1,a2,a3)=2,r(a2,a3,a4)=3,证明:a1能由a2,a3线性表示;
设二次型f(x1,x2,x3)=ax12+ax22+(a—1)x32+2x1x3—2x2x3。若二次型f的规范形为y12+y22,求a的值。
求∫arcsunxarccosxdx.
随机试题
常常使用内部类来实现监听器接口,这是接口和内部类相结合的一个较为典型的例子,它属于()。
[*]
睾丸素在17α位增加一个甲基,此设计主要考虑的是
A.注射高免血清B.注射敏感抗生素C.注射弱毒疫苗D.注射灭活疫苗E.补充葡萄糖生理盐水貂群发生貂病毒性肠炎时,正确的处理方式除了隔离患病貂、严格消毒环境、对病貂注射貂病毒性肠炎高免血清、配合对症和防止继发感染等综合性措施外,对受威胁的易感貂立
药物临床评价的对象A、患者B、健康受试者C、特殊人群D、目标适应证患者E、普通或特殊人群患者Ⅲ期临床试验对象是
关于沉入桩准备工作的说法,错误的是()。
下列关于变动成本的表述中,不正确的有()。
兴趣:索然无味
乔羽的歌大家都熟悉。但他另外两大爱好却鲜为人知,那就是钓鱼和喝酒。晚年的乔羽喜爱垂钓,他说:“有水有鱼的地方大都是有好环境的,好环境便会给人好心情。我认为最好的钓鱼场所不是舒适的、给你准备好饿鱼的垂钓园,而是那极其有吸引力的大自然野外天成的场所。”钓鱼是一
【B1】【B11】
最新回复
(
0
)