首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n矩阵,证明:存在非零的n×s矩阵B,使得AB=0的充要条件是r(A)<n.
设A是m×n矩阵,证明:存在非零的n×s矩阵B,使得AB=0的充要条件是r(A)<n.
admin
2015-08-17
38
问题
设A是m×n矩阵,证明:存在非零的n×s矩阵B,使得AB=0的充要条件是r(A)<n.
选项
答案
充分性 r(A)<n,AX=0有非零解,将非零解X组成B,则B≠0,且有AB=O必要性 若AB=O,其中B≠0,设B=[β
1
β
2
……β
s
],则Aβ
i
=0,i=1,2,…,s.其中β
i
,i=1,2,…,s,不全为0,即AX=0有非零解,故r(A)<n.
解析
转载请注明原文地址:https://kaotiyun.com/show/iQw4777K
0
考研数学一
相关试题推荐
设某次考试的考生成绩服从正态分布,从中随机抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平α=0.05下,是否可以认为这次考试全体考生的平均成绩为70分?并给出检验过程.
设A为3阶实对称矩阵,且满足条件A2+2A=O.已知A的秩r(A)=2.求A的全部特征值;
已知二次型f(χ1,χ2,χ3)=XTAχ在正交变换χ=Qy下的标准形为y12+y22,且Q的第3列为.(Ⅰ)求矩阵A;(Ⅱ)证明A+E为正定矩阵,其中E为3阶单位矩阵.
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=O,求线性方程组Ax=0的通解。
设A是n(n≥3)阶矩阵,证明:(A*)*=|A|n-2A.
设A为n阶实对称可逆矩阵f(χ1,χ2,…,χN)=.(1)记X=(χ1,χ2,…,χn)T,把二次型f(χ1,χ2,…,χn)写成矩阵形式;(2)二次型g(X)=XTAX是否与f(χ1,χ2,…,χn)合同?
设α1,α2,…,αt为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+α1,β+α2,…,β+αt线性无关.
设A为n阶正定矩阵,证明:存在唯一正定矩阵H,使得A=H2.
设3阶矩阵A有3个特征向量η1=(1,2,2)T,η2=(2,-2,1)T,η3=(-2,-1,2)T,它们的特征值依次为1,2,3,求A.
设A是3阶实对称矩阵,满足A2+2A=0,并且r(A)=2.(1)求A的特征值.(2)当实数k满足什么条件时A+kE正定?
随机试题
项目风险对策不包括()。
简述社会救助对象的范围。
采取分泌物做口腔真菌培养时,采集部位宜在
胰腺癌常好发于
极限的值是:
左边图形折起来,将得到右边的图形是()。
国家主席习近平在北京主持召开文艺工作座谈会并发表重要讲话。他强调,文艺是时代前进的号角,最能代表一个时代的风貌,最能引领一个时代的风气。他指出,一部好的作品,应该是把()放在首位。
依次填入下列各句横线处的词语,最恰当的一组是:( )。①这个句子所运用的比喻______三层意思,需要深入挖掘,才能真正体会到其中的妙处。②从这故事里可以看出,李贺从青少年时代起,就把全部心血______到诗歌创作上去了。
Accordingtothespeaker,howshouldmostofthenotesbetaken?
A、Heavyrainshaven’tstrokeQueenslandforalongtime.B、PeopleinQueenslandhavedonesomepreparationforit.C、Therewasn
最新回复
(
0
)