首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2010年试题,21)设二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准型为y12+y22,且Q的第三列为 证明A+E为正定矩阵.
(2010年试题,21)设二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准型为y12+y22,且Q的第三列为 证明A+E为正定矩阵.
admin
2013-12-27
62
问题
(2010年试题,21)设二次型f(x
1
,x
2
,x
3
)=xTAx在正交变换x=Qy下的标准型为y
1
2
+y
2
2
,且Q的第三列为
证明A+E为正定矩阵.
选项
答案
因为矩阵A的特征值为1,1,0,所以矩阵A+E的特征值为2,2,1.因其所有特征均大于零,所以A+E是正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/iR54777K
0
考研数学一
相关试题推荐
设V是向量组α1=(1,1,2,3)T,α2=(-1,1,4,-1)T,α3=(5,-1,-8,9)T所生成的向量空间,求V的维数和它的一个标准正交基.
设A,B为满足AB=O的任意两个非零矩阵,则必有()
设b>a>0,证明不等式
设矩阵求m、n的值及满足AB=C的所有矩阵B.
设y1(x)和y2(x)是微分方程y“+p(x)y+q(x)y=0的两个特解,则由y1(x),y2(x)能构成该方程的通解的充分条件为()
举例说明下列各命题是错误的:若有不全为0的数λ1,λ2,…,λm,使λ1a1+…+λmam+λ1b1+…+λmbm=0成立,则a1,a2,…,am线性相关,b1,b2,…,bm亦线性相关.
设函数f(x)在开区间(a,b)内可导,证明:当导函数f’(x)在(a,b)内有界时,函数f(x)在(a,b)内也有界.
设某次考试的考生成绩服从正态分布,从中随机抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平α=0.05下,是否可以认为这次考试全体考生的平均成绩为70分?并给出检验过程.
在投掷两枚骰子的试验中,观察两枚骰子出现的点数,写出这一试验的样本空间.记X=两枚骰子出现的点数的和,Y=两枚骰子出现的最大点数.写出随机变量X和Y作为样本空间上的函数的表达式.
设总体X的概率密度为其中θ为未知参数且大于零.X1,X2,…,Xn为来自总体X的简单随机样本.求θ的矩估计量;
随机试题
基本生产过程
牙震荡的处理方法首选
医院药事管理委员会是
关于肾功能检查,下列哪些描述正确()。
除圆管涵和箱涵外,单孔跨径小于()m的泄水或通行的小型构造物是涵洞。[2010年真题]
注册会计师在期中实施进一步审计程序也存在很大的局限性,下列有关局限性的说法不恰当的是()。
有些课题主要包含高度有结构的知识和技能,如果教学目标是要求学生尽快地掌握这种知识和技能,则宜于采用()。
幂级数的和函数及定义域是______·
MostpeoplewhodevelopLymedisease,atick-borneinfectionthat’sendemicinpartsoftheNortheastandMidwest,areeasilycu
TheMillenniumSeedBankProjectOneofthelargestconservationprojectseverundertaken;thisinternationalcollaboration
最新回复
(
0
)