首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是4阶方阵,则下列线性方程组是同解方程组的是( ).
设A是4阶方阵,则下列线性方程组是同解方程组的是( ).
admin
2021-07-27
80
问题
设A是4阶方阵,则下列线性方程组是同解方程组的是( ).
选项
A、Ax=0;A
2
x=0
B、A
2
x=0;A
3
x=0
C、A
3
x=0;A
4
x=0
D、A
4
x=0;A
5
x=0
答案
D
解析
证明(D)成立.A
4
x=0→A
5
x=0,现证A
5
x=0→A
4
x=0.用反证法.设A
5
x=0,但A
4
x≠0.因x,Ax,A
2
x,A
3
x,A
3
x,五个4维向量必线性相关,故存在不全为零的数k
0
,k
1
,k
2
,k
3
,k
4
,使得k
0
x+k
1
Ax+k
2
A
2
x+k
3
A
3
x+k
4
A
4
x=0.(*) (*)式两端左乘A
4
,得k
0
A
4
x+k
1
A
5
x+k
2
A
6
x+k
3
A
7
x+k
4
A
8
x=0→k
0
A
4
x=0.因A
4
x≠0,则k
0
=0.将k
0
=0代入(*)式,得k
1
Ax+k
2
A
2
x+k
3
A
3
x+k
4
A
4
x=0.同理可证得k
1
=0,k
2
=0,k
3
=0,k
4
=0.这和已知五个4维向量线性相关矛盾,故A
5
x=0→A
4
x=0.故A
5
x=0→A
4
x=0.(D)是同解方程组,应选(D).
转载请注明原文地址:https://kaotiyun.com/show/iTy4777K
0
考研数学二
相关试题推荐
设A是n阶矩阵,下列命题错误的是().
设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t).(1)问t为何值时,向量组α1,α2,α3线性无关?(2)当t为何值时,向量组α1,α2,α3线性相关?(3)当α1,α2,α3线性相关时,将α1表示为α1和α2的线性组合.
设f(x),g(x)在[a,b]上连续,且满足∫axf(t)dt≥∫axg(t)dt,x∈[a,b),∫abf(t)dt=∫abg(t)dt。证明∫abxf(x)dx≤∫abxg(x)dx。
设A=(aij)为3阶非零实矩阵,且已知Aij=aij(其中Aij为aij的代数余子式),i,j=1,2,3.证明:A可逆,并求|A|与A-1.
已知y1=xex+e2x和y2=xex+e一x是二阶常系数非齐次线性微分方程的两个解,则此方程为()
已知齐次线性方程组同解,求a,b,c的值.
微分方程y"+2y’+y=shx的一个特解应具有形式(其中a,b为常数)()
当x→∞时,若,则a,b,c的值一定是[].
微分方程y’’+y=x2+1+sinx的特解形式可设为()
随机试题
生产中,应尽量采用先装后焊接的方法来增加结构的刚度,以控制焊接变形。
为降低胆红素浓度,防止或减轻核黄疸,简单而有效的方法是
用于疟疾病因性预防的首选药是选择性的解受体激动剂是
患者,男,35岁。缺失3个月,要求固定修复。如果近中倾斜,该牙用做固定桥基牙的最大障碍是
保税物流中心(B型)仓储面积,东部地区不低于()平方米,中西部不低于()平方米。
采用累计实际发生的合同成本占合同预计总成本的比例确定合同完工进度的,累计实际发生的合同成本包括的内容有()。
当领队与团内旅游者之间产生矛盾时,地陪的正确做法是()。
下列白酒中属于浓香型的有()。
上海某出版社与国外某出版公司在北京签订了一份著作权贸易合同,按规定应报()审核登记。
A、13million.B、7million.C、3million.D、30million.C
最新回复
(
0
)