首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶实对称矩阵,满足A4+2A3+A2+2A=0,若秩r(A)=r,则行列式|A+3E|=_______.
设A是n阶实对称矩阵,满足A4+2A3+A2+2A=0,若秩r(A)=r,则行列式|A+3E|=_______.
admin
2018-06-12
36
问题
设A是n阶实对称矩阵,满足A
4
+2A
3
+A
2
+2A=0,若秩r(A)=r,则行列式|A+3E|=_______.
选项
答案
3
n-r
解析
由A是实对称矩阵知A必可相似对角化,而当A~∧时,∧由A的n个特征值所构成.只要能求出对角矩阵∧,根据|A|=Пλ
i
就可以求出行列式|A+3E|的值.
设λ是矩阵A的任一特征值,α是属于特征值λ的特征向量,即Aα=λα(α≠0),则
A
2
α=λ
2
α,A
3
α=λ
3
α,A
4
α=λ
4
α.
于是(λ
4
+2λ
3
+λ
2
+2λ)α=0,α≠0.
即有λ
4
+2λ
3
+λ
2
+2λ=λ(λ+2)(λ
2
+1)=0.
因为实对称矩阵的特征值必是实数,故A的特征值取自-2与0.那么由r(A)=r,得到
即矩阵A的特征值是-2(r重),0(n-r重).因此A+3E的特征值是1(r重),3(n-r重).从而
|A+3E|=3
n-r
.
转载请注明原文地址:https://kaotiyun.com/show/iUg4777K
0
考研数学一
相关试题推荐
已知A=,求可逆矩阵P,使P-1AP=A.
设F(χ,y)在点(χ0,y0)某邻域有连续的偏导数,F(χ0,y0)=0,则F′y(χ0,y0)≠0是F(χ,y)=0在点(χ0,y0)某邻域能确定一个连续函数y=y(χ),它满足y0=y(χ0),并有连续的导数的_______条件.
证明:当成立.
假设你是参加某卫视“相亲节目”的男嘉宾,现有n位女嘉宾在你面前自左到右排在一条直线上,每两位相邻的女嘉宾的距离为a(米).假设每位女嘉宾举手时你必须和她去握手,每位女嘉宾举手的概率均为,且相互独立,若Z表示你和一位女嘉宾握手后到另一位举手的女嘉宾处所走的路
求下列曲面的方程:以曲线为母线,绕z轴旋转一周而生成的曲面;
设f(x,y)在全平面有连续偏导数,曲线积分∫Lf(x,y)dx+xcosydy在全平面与路径无关,且f(x,y)dx+xcosydy=t2,求f(x,y).
求过两点A(0,1,0),B(-1,2,1)且与直线x=-2+t,y=1-4t,z=2+3t平行的平面方程.
设随机变量X的数学期望和方差分别为E(X)=μ,D(X)=σ2,用切比雪夫不等式估计P{|X一μ|<3σ}.
对于任意二随机变量X和Y,与命题“X和Y不相关”不等价的是
求方程y″+2my′+n2y=0的通解;又设y=y(x)是满足y(0)=a,y′(0)=b的特解,求y(x)dx,其中m>n>0,a,b为常数.
随机试题
砂仁不具有的功效是
治疗肝性水肿伴有继发性醛固酮增多症的利尿药是
采集血清酶及肝功能应使用的血标本类型是
从2001年开始,市场步入持续4年的调整阶段:股票指数大幅下挫;新股发行和上市公司再融资难度加大、周期变长;证券公司遇到了严重的经营困难,到2005年全行业连续4年总体亏损。这些问题产生的根源在于( )。
某个体工商户发生的下列支出中,允许在个人所得税税前扣除的是()。
陶行知先生的“捧着一颗心来,不带半根草去”的教育信条,体现了教师素养中的()。
在非授权的情况下,使用Sniffer软件接收和截获网络上传输的信息,这种攻击方式属于(16)。
在考生文件夹下,打开文档Word2.docx,按照要求完成下列操作并以该文件名(Word2.docx)保存文档。将第一行所有单元格合并,并设置该行为黄色底纹。
ENVIRONMENTAL
Thispassageisfromapieceof______.Whatdoesthecenterdotoofferitshelpinanemergencysituation?
最新回复
(
0
)