首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶实对称矩阵,满足A4+2A3+A2+2A=0,若秩r(A)=r,则行列式|A+3E|=_______.
设A是n阶实对称矩阵,满足A4+2A3+A2+2A=0,若秩r(A)=r,则行列式|A+3E|=_______.
admin
2018-06-12
61
问题
设A是n阶实对称矩阵,满足A
4
+2A
3
+A
2
+2A=0,若秩r(A)=r,则行列式|A+3E|=_______.
选项
答案
3
n-r
解析
由A是实对称矩阵知A必可相似对角化,而当A~∧时,∧由A的n个特征值所构成.只要能求出对角矩阵∧,根据|A|=Пλ
i
就可以求出行列式|A+3E|的值.
设λ是矩阵A的任一特征值,α是属于特征值λ的特征向量,即Aα=λα(α≠0),则
A
2
α=λ
2
α,A
3
α=λ
3
α,A
4
α=λ
4
α.
于是(λ
4
+2λ
3
+λ
2
+2λ)α=0,α≠0.
即有λ
4
+2λ
3
+λ
2
+2λ=λ(λ+2)(λ
2
+1)=0.
因为实对称矩阵的特征值必是实数,故A的特征值取自-2与0.那么由r(A)=r,得到
即矩阵A的特征值是-2(r重),0(n-r重).因此A+3E的特征值是1(r重),3(n-r重).从而
|A+3E|=3
n-r
.
转载请注明原文地址:https://kaotiyun.com/show/iUg4777K
0
考研数学一
相关试题推荐
设b1=a1,b2=a1+a2,…,br=a1+a2+…+ar,且向量组a1,a2,…,ar线性无关,证明:向量组b1,b2,…,br线性无关.
已知线性方程组有无穷多解,而A是3阶矩阵,且分别是A关于特征值1,-1,0的三个特征向量,求矩阵A.
设α1,α2,α3是4元非齐次线性方程组Aχ=b的3个解向量,且r(A)=3,α1=(1,2,3,4)T,α2+α3(0,1,2,3)T,c表示任意常数,则线性方程组Aχ=b的通勰χ=()
(Ⅰ)求累次积分J=(Ⅱ)设连续函数f(χ)满足f(χ)=1+∫χ1f(y)f(y-χ)dy,记I=∫01f(χ)dχ,求证:I=1+∫01f(y)dy∫0yf(y-χ)dχ,(Ⅲ)求出I的值.
设平面上连续曲线y=f(χ)(a≤χ≤b,f(χ)>0)和直线χ=a,χ=b及χ轴所围成的图形绕χ轴旋转一周所得旋转体的质心是(,0,0),则的定积分表达式是_______.
设有一正椭圆柱体,其底面的长、短轴分别为2a,2b,用过此柱体底面的短轴且与底面成α角的平面截此柱体,得一楔形体(如图1.3-2),求此楔形体的体积V.
设函数y(x)(x≥0)二阶可导且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及z轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1-S2恒
求y"一2y’一e2x=0满足初始条件y(0)=1,y’(0)=1的特解.
设f(x)=∫0tanxarctant2dt,g(x)=x—sinx,当x→0时,比较这两个无穷小的关系。
求解初值问题
随机试题
企业组织设立过程中,授权的基本原则有()。
根据民事诉讼法的有关规定,下列选项中可以作为上诉人的有()。
关于政府资金的转贷,下列叙述有误的是()。
广州大洋塑料制品有限公司与香港纬元贸易有限公司签定印花塑料餐具加工合同,由纬元公司向大洋公司免费提供ABS树脂一批,并支付加工费,成品由纬元公司在境外销售。大洋公司为此向海关申领了加工贸易手册。在加工过程中,由于没有印花设备,大洋公司报经主管海关同意后,将
承运人有权将集装箱装载舱面运输,这种装载应视为装载舱内运输一样,但事先必须通知托运人。()
材料1:近年来,食品安全问题已成为社会关注的焦点问题之一。食品安全问题直接影响着消费者的健康甚至生命安全,然而我国目前还没有建立较为完善的食品安全教育体系,公民主要通过电视、广播、网络等大众媒体了解食品安全信息。而大多数食品安全问题都与化学有着密切的联系,
斯金纳认为,学生听到上课铃声后迅速安静坐好的行为属于操作行为。()
天南地北双飞客对于()相当于平分秋色一轮满对于()
根据我国个人所得税税法规定,个人取得的月工资超过3500元以上的部分必须按规定计算缴纳个人所得税,该3500元的规定属于()。
Itwasbecausetheapplicantwastooconceited(自负的)______hefailedintheinterview.
最新回复
(
0
)