首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶实对称矩阵,满足A4+2A3+A2+2A=0,若秩r(A)=r,则行列式|A+3E|=_______.
设A是n阶实对称矩阵,满足A4+2A3+A2+2A=0,若秩r(A)=r,则行列式|A+3E|=_______.
admin
2018-06-12
38
问题
设A是n阶实对称矩阵,满足A
4
+2A
3
+A
2
+2A=0,若秩r(A)=r,则行列式|A+3E|=_______.
选项
答案
3
n-r
解析
由A是实对称矩阵知A必可相似对角化,而当A~∧时,∧由A的n个特征值所构成.只要能求出对角矩阵∧,根据|A|=Пλ
i
就可以求出行列式|A+3E|的值.
设λ是矩阵A的任一特征值,α是属于特征值λ的特征向量,即Aα=λα(α≠0),则
A
2
α=λ
2
α,A
3
α=λ
3
α,A
4
α=λ
4
α.
于是(λ
4
+2λ
3
+λ
2
+2λ)α=0,α≠0.
即有λ
4
+2λ
3
+λ
2
+2λ=λ(λ+2)(λ
2
+1)=0.
因为实对称矩阵的特征值必是实数,故A的特征值取自-2与0.那么由r(A)=r,得到
即矩阵A的特征值是-2(r重),0(n-r重).因此A+3E的特征值是1(r重),3(n-r重).从而
|A+3E|=3
n-r
.
转载请注明原文地址:https://kaotiyun.com/show/iUg4777K
0
考研数学一
相关试题推荐
已知r(a1,a2,a3)=2,r(a2,a3,a4)=3,证明:(1)a1能由a2,a3线性表示;(2)a4不能由a1,a2,a3线性表示.
设4元齐次线性方程组(1)为而已知另一4元齐次线性方程组(2)的一个基础解系为α1=(2,-1,a+2,1)T,α2=(-1,2,4,a+8)T.(1)求方程组(1)的一个基础解系;(2)当a为何值时,方程组(1)与
设L为曲线|χ|+|y|=1,则∫L|χ|ds=________.
设A是3阶矩阵,α1,α2,α3都是3维非零列向量,满足Aαi=iαi,(i=1,2,3).记α=α1+α2+α3.①证明α,Aα,A2α线性无关.②设P=(α,Aα,A2α),求P-1AP.
已知方程组(Ⅰ)及方程组(Ⅱ)的通解为k1[-1,1,1,0]T+k2[2,-1,0,1]T+[-2,-3,0,0]T.求方程组(Ⅰ),(Ⅱ)的公共解.
设f(x)=试确定常数a,b,c,使f(x)在x=0点处连续且可导.
A,B是n阶方阵,则下列公式正确的是()
求不定积分
设向量组(Ⅰ)与向量组(Ⅱ),若(Ⅰ)可由(Ⅱ)线性表示,且r(Ⅰ)=r(Ⅱ)=r.证明:(Ⅰ)与(Ⅲ)等价.
设A,B是任两个随机事件,下列事件中与A+B=B不等价的是().
随机试题
男,45岁,间歇性腹泻、脓血便一年,乙状结肠镜插入15cm处见到4mm大小边缘整的溃疡多处,较深,溃疡面覆盖灰白色苔状物,溃疡间黏膜正常,哪种病可能性大
外科疾病辨证的总纲是
痛经之所以随月经周期而发作,与下列有关的是
8个月男婴,咳嗽3天,发热伴气促1天,查体:呼吸急促,口周略发青,咽部充血,双肺闻及中小水泡音,心、腹(-);白细胞10×109/L,N0.65,L0.35,其最可能的诊断是
关于基本建设的基本特点,描述错误的是()。
()时期,我国的金、银、铜、铁等矿藏开采量位居世界第一。
“日暮乡关何处是?烟波江上使人愁”是唐代崔颢《黄鹤楼》中的名句。()
教师职业道德区别于其他职业道德的显著标志是()。
简述并评价文化教育学。
ThatwassoseriousamatterthatIhadnochoicebut______thepolice.
最新回复
(
0
)