首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶矩阵A=(α1,α2,α3)有3个不同的特征值,且α3=α1+2α2. (1)证明r(A)=2. (2)若β=α1+α2+α3,求方程组Ax=β的通解.
设3阶矩阵A=(α1,α2,α3)有3个不同的特征值,且α3=α1+2α2. (1)证明r(A)=2. (2)若β=α1+α2+α3,求方程组Ax=β的通解.
admin
2020-09-25
90
问题
设3阶矩阵A=(α
1
,α
2
,α
3
)有3个不同的特征值,且α
3
=α
1
+2α
2
.
(1)证明r(A)=2.
(2)若β=α
1
+α
2
+α
3
,求方程组Ax=β的通解.
选项
答案
(1)设A的特征值为λ,λ,λ.因为A有三个不同的特征值,所以A可以相似对角化,即存在可逆矩阵P,使得 [*] 因为λ
1
,λ
2
,λ
3
两两不相同,则有r(A)≥2.又因为α
3
=α
1
+2α
2
,所以α
1
,α
2
,α
3
线性相关,从而可知r(A)<3,于是r(A)=2. (2)因为r(A)=2,所以Ax=0的基础解系含一个线性无关的解向量. 由α
3
=α
1
+2α
2
可得(α
1
,α
2
,α
3
)[*]=0,即(1,2,一1)
T
为Ax=0的一个基础解系.所以Ax=0的通解为x=k(1,2,一1)
T
(k为任意常数). 由β=α
1
+α
2
+α
3
=A(1,1,1)
T
可得Ax=β的一个特解为(1,1,1)
T
. 所以Ax=β的通解为x=k(1,2,一1)
T
+(1,1,1)
T
(k为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/iWx4777K
0
考研数学三
相关试题推荐
若β=(1,3,0)T不能由α1=(1,2,1)T,α2=(2,3,a)T,α3=(1,a+2,-2)T线性表出,则a=______.
已知,A*是A的伴随矩阵,那么A*的特征值是________。
设三阶行列式D3的第二行元素分别为1、一2、3,对应的代数余子式分别为一3、2、1,则D3=________。
设矩阵A与B=相似,则r(A)+r(A一2E)=________。
已知矩阵,若线性方程组Ax=b有无穷多解,则a=________.
设A是三阶实对称矩阵,E三阶单位矩阵,若A2+A=2E,且|A|=4,则二次型xTAx的规范形为()
已知X=AX+B,其中求矩阵X.
(2012年)已知函数f(x)满足方程f’’(x)+f’(x)一2f(x)=0及f’’(x)+f(x)=2ex.(Ⅰ)求f(x)的表达式;(Ⅱ)求曲线y=f(x2)∫0x(一t2)出的拐点.
设α1,α2,α3均为三维列向量,记矩阵A=[α1,α2,α3],B=[α1+α2+α3,α1+2α1+4α3,α1+3α2+9α3]如果|A|=1,那么|B|=__________.
设f=xTAx,g=xTBx是两个n元正定二次型,则下列未必是正定二次型的是()
随机试题
--Willyoucometothepartythisweekend?--______.
患者男,72岁。因进食时误吞鸭骨后吞咽困难和吞咽疼痛6小时,在当地医院就诊,经照X线片发现食管中段有不透光的阴影,由于当地医院条件有限,仅给予抗感染、对症和支持治疗两天,症状无明显缓解,且出现背部及胸骨后疼痛,多次呕吐,呕吐物为唾液样物,其中两次带有少许鲜
A、0B、∞C、5/4D、3/5C由—般结论
大气环境评价中的监测点的布设应尽量()反映评价范围内的环境空气质量。
Nowletuslookathowweread.Whenwereadaprintedtext,oureyesmoveacrossapageinashort,jerkymovement.Werecognizewo
大足宝顶山石刻在造像上不局限于佛像的宗教题材,而且用大画面、广角度、全方位反映于当时的社会生活、伦理道德、民间疾苦,是不可多得的世俗风情画,最突出表现有()。
在知识经济勃兴的今天,阅读已不仅仅关乎个人的修身养性,更攸关一个国家的国民素质和竞争力。因为,阅读习惯和阅读能力的欠缺将极大地损害人们的想象力和创造力,而想象力和创造力是一个国家一个民族永葆活力的源泉。有一个严峻的事实我们不得不面对:当代世界的知识创新、科
人类历史上,技术革命往往和社会发展的__________相互作用,互为因果。今天,以微博为代表的互联网技术应用正__________着它推进社会生活各个领域发生变化的巨大潜能。依次填入划横线部分最恰当的一项是()。
TheAmericansandEnglishmenbothspeakEnglish.AmericansandEnglishmenhavedifficultiesinunderstandingeachother.
Thewoman’snameisMaryJoanShute.Youmaycallher______.
最新回复
(
0
)