首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶矩阵A=(α1,α2,α3)有3个不同的特征值,且α3=α1+2α2. (1)证明r(A)=2. (2)若β=α1+α2+α3,求方程组Ax=β的通解.
设3阶矩阵A=(α1,α2,α3)有3个不同的特征值,且α3=α1+2α2. (1)证明r(A)=2. (2)若β=α1+α2+α3,求方程组Ax=β的通解.
admin
2020-09-25
98
问题
设3阶矩阵A=(α
1
,α
2
,α
3
)有3个不同的特征值,且α
3
=α
1
+2α
2
.
(1)证明r(A)=2.
(2)若β=α
1
+α
2
+α
3
,求方程组Ax=β的通解.
选项
答案
(1)设A的特征值为λ,λ,λ.因为A有三个不同的特征值,所以A可以相似对角化,即存在可逆矩阵P,使得 [*] 因为λ
1
,λ
2
,λ
3
两两不相同,则有r(A)≥2.又因为α
3
=α
1
+2α
2
,所以α
1
,α
2
,α
3
线性相关,从而可知r(A)<3,于是r(A)=2. (2)因为r(A)=2,所以Ax=0的基础解系含一个线性无关的解向量. 由α
3
=α
1
+2α
2
可得(α
1
,α
2
,α
3
)[*]=0,即(1,2,一1)
T
为Ax=0的一个基础解系.所以Ax=0的通解为x=k(1,2,一1)
T
(k为任意常数). 由β=α
1
+α
2
+α
3
=A(1,1,1)
T
可得Ax=β的一个特解为(1,1,1)
T
. 所以Ax=β的通解为x=k(1,2,一1)
T
+(1,1,1)
T
(k为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/iWx4777K
0
考研数学三
相关试题推荐
设三阶方阵A的特征值是1,2,3,它们所对应的特征向量依次为α1,α2,α3,令P=(3α3,α1,2α2),则P-1AP=__________。
一批产品中一等品、二等品、三等品的比例分别为60%,30%,10%,从中任取一件结果不是三等品,则取到一等品的概率为________.
若β=(1,3,0)T不能由α1=(1,2,1)T,α2=(2,3,a)T,α3=(1,a+2,-2)T线性表出,则a=______.
设A是秩为3的5×4矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,如果α1+α2+2α3=(2,0,0,0)T,3α1+α2=(2,4,6,8)T,则方程组Ax=b的通解是___________。
已知实二次型f(x1,x2,x3)=a(x12,x22,x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=_______.
已知X=AX+B,其中求矩阵X.
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。(Ⅰ)计算PTDP,其中P=;(Ⅱ)利用(Ⅰ)的结果判断矩阵B—CTA-1C是否为正定矩阵,并证明你的结论。
设向量α1,α2,…,αt是齐次线性方程组.AX=0的一个基础解系,向量β不是AX=0的解,即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
随机试题
《拣麦穗》中“那个皱巴巴的,像猪肚子一样的烟荷包”象征( )
普通股票是最基本、最常见的一种股票,普通股票的股利不完全随公司盈利的高低而变化。( )
“一对多”基金专户理财要求账户人数上限为()人,每个客户准入门槛不低于()万元。
建立系统论的科学家是()。
Writeanessayof160—200wordsbasedonthefollowingdrawing.Inyouressay,youshould1)describethedrawingbriefly,
在VisualFoxPro中,有关参照完整性的删除规则正确的描述是( )。
下列给定程序中函数fun的功能是:用递归算法计算斐波拉契数列中第n项的值。从第1项起,斐波拉契数列为:1,1,2,3,5,8,13,21。…例如,若给n输入7,则该项的斐波拉契数值为13。请改正程序中的错误,使它能得出正确结果。注意:不要改动main
Theostrich,thelargestbirdintheworldatpresent,livesinthedrierregionsofAfricaoutsidetheactualdeserts.Becauseo
TheReputationInstitute,aconsultancy,hasrevealedtheresultsofitslatest"Reptrack"CorporateReputationSurveyVariouss
Thelong-anticipatedHongKongDisneyland,the11thDisney-themedParkintheworldandthefirstinChina,successfullyopened
最新回复
(
0
)