首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶矩阵A=(α1,α2,α3)有3个不同的特征值,且α3=α1+2α2. (1)证明r(A)=2. (2)若β=α1+α2+α3,求方程组Ax=β的通解.
设3阶矩阵A=(α1,α2,α3)有3个不同的特征值,且α3=α1+2α2. (1)证明r(A)=2. (2)若β=α1+α2+α3,求方程组Ax=β的通解.
admin
2020-09-25
76
问题
设3阶矩阵A=(α
1
,α
2
,α
3
)有3个不同的特征值,且α
3
=α
1
+2α
2
.
(1)证明r(A)=2.
(2)若β=α
1
+α
2
+α
3
,求方程组Ax=β的通解.
选项
答案
(1)设A的特征值为λ,λ,λ.因为A有三个不同的特征值,所以A可以相似对角化,即存在可逆矩阵P,使得 [*] 因为λ
1
,λ
2
,λ
3
两两不相同,则有r(A)≥2.又因为α
3
=α
1
+2α
2
,所以α
1
,α
2
,α
3
线性相关,从而可知r(A)<3,于是r(A)=2. (2)因为r(A)=2,所以Ax=0的基础解系含一个线性无关的解向量. 由α
3
=α
1
+2α
2
可得(α
1
,α
2
,α
3
)[*]=0,即(1,2,一1)
T
为Ax=0的一个基础解系.所以Ax=0的通解为x=k(1,2,一1)
T
(k为任意常数). 由β=α
1
+α
2
+α
3
=A(1,1,1)
T
可得Ax=β的一个特解为(1,1,1)
T
. 所以Ax=β的通解为x=k(1,2,一1)
T
+(1,1,1)
T
(k为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/iWx4777K
0
考研数学三
相关试题推荐
如果β=(1,2,t)T可以由α1=(2,l,1)T,α2=(—1,2,7)T,α3=(1,—1,—4)T线性表示,则t的值是________。
设α=(1,-1,a)T是A=的伴随矩阵A*的特征向量,其中r(A*)=3,则a=__________
设三阶方阵A的特征值是1,2,3,它们所对应的特征向量依次为α1,α2,α3,令P=(3α3,α1,2α2),则P-1AP=__________。
微分方程xy’一y[1n(xy)一1]=0的通解为__________.
设可导函数y=y(x)由方程xsint2dt确定.则=________.
设矩阵A与B=相似,则r(A)+r(A一2E)=________。
已知α1,α2,α3,β,γ都是4维列向量,且|α1,α2,α3,β|=a,|β+γ,α3,α2,α1|=b,则|2γ,α1,α2,α3|=________.
设A是三阶实对称矩阵,E三阶单位矩阵,若A2+A=2E,且|A|=4,则二次型xTAx的规范形为()
设向量α1,α2,…,αt是齐次线性方程组.AX=0的一个基础解系,向量β不是AX=0的解,即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
随机试题
体温在39℃以上,24小时内波动
A.抗炎B.镇静C.利尿D.解热E.利胆理气药主要药理作用()。
非处方药给药途径,主要是( )。
微分方程y’’+y’-y=ex的一个特解是()。
背景某机电安装公司投标一个30层的商务楼机电工程项目,机电工程范围有:建筑给水排水、建筑电气、通风空调、建筑智能化、消防工程。安装公司依据业主提供的工程量清单,按综合单价法编制了商务楼机电工程施工图预算。因造价合理,安装公司中标并签订合同,合同造
期货公司风险监管指标达到预警标准的,期货公司应当于5个工作日内向公司住所地中国证监会派出机构书面报告。( )
小王是个性格柔软的人,不懂得如何辨别益友、损友和拒绝别人,在学校经常被一些不良青少年欺负,作为一位学校社会工作者,你打算教小王一些拒绝损友的小方法,以下关于小方法的内容正确的有()。
薛女士反映,转学还不到一学期的10岁儿子小雷(化名)跟过去比好像换了个人。以往由于喜欢做小动作,小雷没少挨老师的骂,结果看到老师就害怕,不得不转学。到新学校后不久,小雷在上课时又忍不住做起了小动作,被老师发现了。新老师什么也没说,只是微笑着轻轻拍了一下他的
有一个人对他的妻子说,如果将来他们有一个儿子,他的儿子就分得他的遗产的2/3,妻子得1/3;如果将来生一个女儿,则他的女儿得1/3,妻子得2/3。现在他的妻子生下一个儿子一个女儿,遗产应该怎样分配?
ThomasMalthuspublishedhisEssayonthePrincipleofPopulationalmost200yearsago.Eversincethen,forecastershavebeing
最新回复
(
0
)