首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶矩阵,λ1,λ2,λ3是A的3个不同的特征值,对应的特征向量分别是ξ1,ξ2,ξ3,令β=ξ1+ξ2+ξ3. 证明向量组β,Aβ,A2β线性无关.
设A是3阶矩阵,λ1,λ2,λ3是A的3个不同的特征值,对应的特征向量分别是ξ1,ξ2,ξ3,令β=ξ1+ξ2+ξ3. 证明向量组β,Aβ,A2β线性无关.
admin
2014-04-16
44
问题
设A是3阶矩阵,λ
1
,λ
2
,λ
3
是A的3个不同的特征值,对应的特征向量分别是ξ
1
,ξ
2
,ξ
3
,令β=ξ
1
+ξ
2
+ξ
3
.
证明向量组β,Aβ,A
2
β线性无关.
选项
答案
法一 用线性无关的定义证.假设有数k
1
,k
2
,k
3
使得k
1
β+k
2
Aβ+kA
2
β=0.由β=ξ
1
+ξ
2
+ξ
3
及Aξ
i
=λ
i
ξ
i
,i=1,2,3.代入得k
2
(ξ
2
+ξ
2
+ξ
3
)+k
2
(λ
2
ξ
2
+λ
2
ξ
2
+λ
3
ξ
3
)+k
3
(λ
1
ξ
1
+λ
2
2
ξ
2
2
+λ
2
2
ξ
3
)=0,整理得(k
1
+k
2
λ
1
+k
3
λ
1
2
)ξ
1
+(k
1
+k
2
λ
2
+k
3
λ
2
2
)ξ
2
+(k
1
+k
2
λ
3
+k
3
λ
3
2
)ξ
3
=0.因ξ
1
,ξ
2
,ξ
3
线性无关,上式成立当且仅当[*]又λ
i
,i=1,2,3互不相同,故方程组(*)的系数行列式[*]故方程组(*)仅有零解,即k
1
=k
2
一k
3
=0,所以β,Aβ,A
2
β线性无关. 法二 用等价向量组、初等变换、秩等论证.因[β,Aβ,A
2
β]=[ξ
1
+ξ
2
+ξ
3
,λ
1
ξ
1
+λ
2
ξ
2
+λ
3
ξ
3
,λ
1
2
ξ
1
+λ
2
2
ξ
2
+λ
3
2
ξ
3
][*]其中[*]所以C是可逆阵.故r[β
1
,Aβ,A
2
β]=r(ξ
1
,ξ
2
,ξ
3
)=3.因此,β,Aβ,A
2
β线性无关.(请读者用等价向量组或初等变换自行证明)
解析
转载请注明原文地址:https://kaotiyun.com/show/iX34777K
0
考研数学二
相关试题推荐
a=0.4,b=0.1
(2007年)微分方程满足y|x=1的特解为y=______.
设A为二阶矩阵,P=(a,Aa),其中a是非零向量且不是A的特征向量.证明P为可逆矩阵;
(2003年)求幂级数(|x|<1)的和函数f(x)及其极值。
设方程yln(y-x)+cos(xy)-1=y确定函数y=y(x),则y”(0)=________。
若函数f(x)在点x0处的左导数f’-(x0)和右导数f’+(x0)都存在,则()。
微分方程xy′+2y=xlnx满足的特解为__________,
微分方程2y"-6y′+5y=0的通解为____________.
求解不定积分
设k>1,D是由曲线与它的水平渐近线之间的从x=2延伸到x→+∞的无界区域,当k为何值时,D的面积最小,并求出最小值。
随机试题
患儿男,8个月。发热、咳嗽4天,加重伴气促2天,精神不振,食欲减退。查体:体温37.9℃,呼吸46次/分,咽部充血,双肺可闻及哮鸣音,心率140次/分,肝脏肋下1.0cm,血常规WBC8.2×109/L,L0.72,胸片示两肺可见小点片状阴影,伴肺气肿。
张某,男,40岁,因恶心呕吐、停止排便排气1日入院,表现为口渴、尿少、眼球下陷、脉速、血压为90/60mmHg,请估计其缺水性质和程度()。
A.解表清里,化痰平喘B.清热化痰,宣肺平喘C.扶阳固脱,镇摄肾气D.补肾纳气喘证虚喘脱证的治法宜选用
安装人工心脏起搏器后多长时间就可以下床活动()
对该病例首先考虑为进一步确诊,首先选用
女,40岁。发现颈部肿大6年,近半年来常感心悸,多汗,食量加大,查体:无突眼、甲状腺Ⅱ度肿大、结节状,脉搏116次/分,心、肺、腹无异常发现,其诊断可能是
所有可能积累粉尘的生产车间和储存室,都应()清扫。
下列选项中,关于留置的说法错误的是()。
古人说:“操千曲而后晓声,观千剑而后识器。”从哲学上来看,这里主要强调的是()。
G系数提供各种测验方案下的测验误差估计值,是衡量常模参照性测验质量的
最新回复
(
0
)