首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶矩阵,λ1,λ2,λ3是A的3个不同的特征值,对应的特征向量分别是ξ1,ξ2,ξ3,令β=ξ1+ξ2+ξ3. 证明向量组β,Aβ,A2β线性无关.
设A是3阶矩阵,λ1,λ2,λ3是A的3个不同的特征值,对应的特征向量分别是ξ1,ξ2,ξ3,令β=ξ1+ξ2+ξ3. 证明向量组β,Aβ,A2β线性无关.
admin
2014-04-16
46
问题
设A是3阶矩阵,λ
1
,λ
2
,λ
3
是A的3个不同的特征值,对应的特征向量分别是ξ
1
,ξ
2
,ξ
3
,令β=ξ
1
+ξ
2
+ξ
3
.
证明向量组β,Aβ,A
2
β线性无关.
选项
答案
法一 用线性无关的定义证.假设有数k
1
,k
2
,k
3
使得k
1
β+k
2
Aβ+kA
2
β=0.由β=ξ
1
+ξ
2
+ξ
3
及Aξ
i
=λ
i
ξ
i
,i=1,2,3.代入得k
2
(ξ
2
+ξ
2
+ξ
3
)+k
2
(λ
2
ξ
2
+λ
2
ξ
2
+λ
3
ξ
3
)+k
3
(λ
1
ξ
1
+λ
2
2
ξ
2
2
+λ
2
2
ξ
3
)=0,整理得(k
1
+k
2
λ
1
+k
3
λ
1
2
)ξ
1
+(k
1
+k
2
λ
2
+k
3
λ
2
2
)ξ
2
+(k
1
+k
2
λ
3
+k
3
λ
3
2
)ξ
3
=0.因ξ
1
,ξ
2
,ξ
3
线性无关,上式成立当且仅当[*]又λ
i
,i=1,2,3互不相同,故方程组(*)的系数行列式[*]故方程组(*)仅有零解,即k
1
=k
2
一k
3
=0,所以β,Aβ,A
2
β线性无关. 法二 用等价向量组、初等变换、秩等论证.因[β,Aβ,A
2
β]=[ξ
1
+ξ
2
+ξ
3
,λ
1
ξ
1
+λ
2
ξ
2
+λ
3
ξ
3
,λ
1
2
ξ
1
+λ
2
2
ξ
2
+λ
3
2
ξ
3
][*]其中[*]所以C是可逆阵.故r[β
1
,Aβ,A
2
β]=r(ξ
1
,ξ
2
,ξ
3
)=3.因此,β,Aβ,A
2
β线性无关.(请读者用等价向量组或初等变换自行证明)
解析
转载请注明原文地址:https://kaotiyun.com/show/iX34777K
0
考研数学二
相关试题推荐
(94年)设函数f(χ)在闭区间[a,b]上连续,且f(χ)>0,则方程∫aχf(t)dt+=0在开区间(a,b)内的根有
(01年)设f(χ)的导数在χ=a处连续,又=-1,则
连续型随机变量取任何给定实数值的概率都等于6._______(填“是”或“不是”)
(2014年)设D是由曲线xy+1=0与直线y+x=0及y=2围成的有界区域,则D的面积为______.
(2016年)设函数f(x)=∫01|t2—x2|dt(x>0),求f’(x),并求f(x)的最小值。
(89年)曲线y=χ+sin2χ在点()处的切线方程是_______.
(1989年)求微分方程y’’+5y’+6y=2e-x的通解.
(1999年)曲线的切线与x轴和y轴围成一个图形,记切点的横坐标为a,试求切线方程和这个图形的面积,当切点沿曲线趋于无穷远时,该面积的变换趋势如何?
方程2xydx-(1+x2)dy=0的满足y(0)=1特解为___________.
求解定积分
随机试题
出现冷却系温度过高应先检查冷却液量是否()。
男性,56岁,右上腹不适,食欲不振,消瘦一个月,近半月来尿黄,灰白大便。查体:消瘦病容,巩膜皮肤明显黄染,肝肋下3.0cm,表面光滑,脾未及,触及肿大胆囊,血清总胆红素136μmol/L,直接胆红素90μmol/L,尿胆红素(+),尿胆原(﹣),最可能的诊
患者女,40岁,经行腹痛来诊。腹痛拒按,经色紫红,夹有血块,下血块后痛即缓解,脉象沉涩。治疗宜选用下列哪组穴位( )。
背景资料:某项目经理部承包了南方某运营商的直埋光缆线路工程,工程开工时正逢酷暑天气。项目经理部为了保证工期,在施工过程中坚持全天候作业,致使部分施工人员中暑;部分已挖好的光缆沟在放缆前就被冲塌;部分坡坎保护制作不合格,并被质量监督机构在检查中发现
人民法院对第二审案件的审理,在下列表述中,正确的有()。
(操作员:张主管;账套:101账套;操作日期:2014年1月1日)新增付款方式:付款方式编码:02付款方式名称:转账支票进行票据管理:需要
塔湾金沙是舟山群岛第()大沙滩。
工业和信息化部发布的数据显示,2011年9月份全国电话用户净增1185.6万户,总数达到124073.8万户。其中,同定电话用户减少36.3万户、移动电话用户净增1222万户,创造单月净增用户新纪录。据统计,2011年1~9月全国固定电话用户减少
耐受力
(12年)证明:(-1<χ<1).
最新回复
(
0
)