首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量(X,Y)的概率密度为 问X与Y是否独立?|X|与|Y|是否独立?
设随机变量(X,Y)的概率密度为 问X与Y是否独立?|X|与|Y|是否独立?
admin
2017-06-26
55
问题
设随机变量(X,Y)的概率密度为
问X与Y是否独立?|X|与|Y|是否独立?
选项
答案
关于X的边缘密度为f
x
(χ)=∫
-∞
+∞
f(χ,y)dy. 若|χ|≥1,则f
x
(χ)=0;若|χ|<1,则f
x
(χ)=[*]. 关于Y的边缘密度为f
Y
(y)=∫
-∞
+∞
f(χ,y)dχ 若|y|≥1,则f
Y
(y)=0;若|y|<1,则f
Y
(y)=[*]. [*] 即X与Y不独立. 而(|X|,|Y|)的分布函数为F(χ,y)=P{|X|≤χ,|y|≤y} 当χ≤0或y≤0时,F(χ,y)=0; 当χ≥0,y≥0时,F(χ,y)=P{-χ≤X≤χ,-y≤Y≤y}=∫
-χ
χ
du∫
-y
y
f(u,v)dv. 当χ≥1,y≥1时,F(χ,y)=[*]=1; 当0<χ≤1,y≥1时,F(χ,y)=[*]=χ; 当χ≥1,0<y≤1时,F(χ,y)=[*]=y; 当0<χ<1,0<y<1时,F(χ,y)=[*]=χy. [*] 于是,关于|X|的(边缘)分布函数为: [*] 而关于|y|的(边缘)分布函数为: [*] 可见F
|X|
(χ).F
|Y|
(y)=F(χ,y)[*](χ,y)∈R
2
,即|X|与|Y|相互独立.
解析
转载请注明原文地址:https://kaotiyun.com/show/ijH4777K
0
考研数学三
相关试题推荐
设A为三阶矩阵,A的特征值为λ1=1,λ22,λ3=3,其对应的线性无关的特征向量分别为,求Anβ.
两台同样自动记录仪,每台无故障工作的时间服从参数为5的指数分布;首先开动其中一台,当其发生故障时,停用而另一台自动开动.试求两台记录仪无故障工作的总时间T的概率密度f(t)、数学期望和方差.
已知齐次线性方程组同解,求a,b,c的值.
已知a1=(1,4,0,2)T,a2=(2,7,1,3)Ta3=(0,1,-1,0)T,β=(3,10,6,4)T,问:(Ⅰ)a,b取何值时,β不能由a1,a2,a3线性表示?(Ⅱ)a,b取何值时,β可由a1,a2,a3线性表示?并写出此表示式.
某公司可通过电台及报纸两种方式做销售某种商品的广告,根据统计资料,销售收入R(万元)与电台广告费用x1(万元)及报纸广告费用x2(万元)之间的关系有如下经验公式:R=15+14x1+32x2=-8x1x2-2x12-10x22,在广告费用不限的情况下,求最
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:(Ⅰ)存在ξ∈(0,1),使得f(ξ)=1-ξ;(Ⅱ)存在两个不同的点η,ζ∈(0,1),使得f’(η)f’(ζ)=1.
设某种商品的单价为p时,售出的商品数量Q可以表示成Q=a/(p+b)-c,其中a,b,c均为正数,且a>bc.(Ⅰ)求p在何范围变化时,使相应销售额增加或减少?(Ⅱ)要使销售额最大,商品单价p应取何值?最大销售额是多少?
设其中f(u,v)是连续函数,则dz=_________.
n为给定的自然数,极限=____________.
随机试题
肛管排气时,其肛管插入肛门约
茵陈蒿汤主要用于
省、自治区、直辖市政府财政部门对于本行政区域的预算收支月报,按照财政部规定的内容编制,于每月终了后()日内报送财政部。
对初始状态为递增序列的表按递增顺序排序,最省时间的是((1))算法,最费时间的是((2))算法。(1)
设。已知线性方程组Ax=b存在两个不同的解。求λ,a。
在考生文件夹下,打开testdb数据库,完成如下操作:(1)为表sell建立一个主索引,索引名为PK,索引表达式为:部门号+年度十月份。(2)将自由表datatest、model、tabc和pass添加到当前打开的数据库中。
在下面的程序段中,有关paint()方法中正确的说法是()。publicvoidpaint(Graphicsg){g.drawString("Anyquestion",10,0);}
C语言源程序名的后缀是()。
•Readthearticlebelowabouthigh-contextandlow-contextculture•Inmostofthelines41-52thereisoneextraword.Itisei
Junkfoodiseverywhere.We’reeatingwaytoomuchofit.Mostofusknowwhatwe’redoingandyetwedoitanyway.Sohere’
最新回复
(
0
)