首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量(X,Y)的概率密度为 问X与Y是否独立?|X|与|Y|是否独立?
设随机变量(X,Y)的概率密度为 问X与Y是否独立?|X|与|Y|是否独立?
admin
2017-06-26
19
问题
设随机变量(X,Y)的概率密度为
问X与Y是否独立?|X|与|Y|是否独立?
选项
答案
关于X的边缘密度为f
x
(χ)=∫
-∞
+∞
f(χ,y)dy. 若|χ|≥1,则f
x
(χ)=0;若|χ|<1,则f
x
(χ)=[*]. 关于Y的边缘密度为f
Y
(y)=∫
-∞
+∞
f(χ,y)dχ 若|y|≥1,则f
Y
(y)=0;若|y|<1,则f
Y
(y)=[*]. [*] 即X与Y不独立. 而(|X|,|Y|)的分布函数为F(χ,y)=P{|X|≤χ,|y|≤y} 当χ≤0或y≤0时,F(χ,y)=0; 当χ≥0,y≥0时,F(χ,y)=P{-χ≤X≤χ,-y≤Y≤y}=∫
-χ
χ
du∫
-y
y
f(u,v)dv. 当χ≥1,y≥1时,F(χ,y)=[*]=1; 当0<χ≤1,y≥1时,F(χ,y)=[*]=χ; 当χ≥1,0<y≤1时,F(χ,y)=[*]=y; 当0<χ<1,0<y<1时,F(χ,y)=[*]=χy. [*] 于是,关于|X|的(边缘)分布函数为: [*] 而关于|y|的(边缘)分布函数为: [*] 可见F
|X|
(χ).F
|Y|
(y)=F(χ,y)[*](χ,y)∈R
2
,即|X|与|Y|相互独立.
解析
转载请注明原文地址:https://kaotiyun.com/show/ijH4777K
0
考研数学三
相关试题推荐
设A为三阶矩阵,A的特征值为λ1=1,λ22,λ3=3,其对应的线性无关的特征向量分别为,求Anβ.
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×m中元素aij(i,j=1,2,…,n)的代数余子式,二次型f(x1,x2,…,xn)=(Ⅰ)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)的
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为a1,a2则a1,A(a1+a2)线性无关的充分必要条件是().
设每天生产某种商品g单位时的固定成本为20元,边际成本函数C’(q)=0.4g+2元/件.求成本函数C(g).如果该商品的销售价为18元/件,并且所有产品都能够售出,求利润函数L(q),并问每天生产多少件产品时才能获得最大利润?
设某酒厂有一批新酿的好酒,如果现在(假定t=0)就售出,总收入为R0(元).如果窑藏起来待来日按陈酒价格出售,t年末总收入为,假定银行的年利率为r,并以连续复利计算,试求窑藏多少年售出可使总收入的现值最大,并求r=0.06时的t值.
设y(x)是由x2+xy+y=tan(x一y)确定的隐函数,且y(0)=0,则y’’(0)=_______.
设二次型xTAx=x12+4x22+x32+2ax1x2+2bx1x3+2cx2x3,矩阵A满足AB=0,其中求:(A一3E)6.
n+1阶行列式=_____,其中ai≠0(i,2,…,n).
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:t为何值时,向量组α1,α2,α3线性相关?
设f(x)在x=0点的某邻域内可导,且当x≠0时f(x)≠0,已知f(0)=0,f’(0)=,求极限
随机试题
胸部高分辨力CT扫描的适应证,不包括
下列不是卵巢恶性肿瘤高危人群的是
朊病毒的化学本质是
A.相须B.相使C.相畏D.相杀E.相恶黄芪配茯苓体现的是七情中的
患者,男,高处坠落后出现严重呼吸困难、四肢不能活动。查体:颈部压痛,四肢瘫痪,高热,有较重痰呜音。x线摄片提示:C4~C5骨折,合并脱位。减轻脊髓水肿和继发性损伤可采取
某行政单位购建一幢办公楼,工程项目支出为100万元,该资金的支付可以采用财政授权支付程序。()
大城市的公共交通部门正在赤字中挣扎。乘客总抱怨汽车晚点、运输工具出毛病、服务种类减少以及票价高于他们过去习惯于支付的水平。由于上述所有原因以及汽油的价格并未高至令人不敢问津的水平,所以公共交通的乘客有所减少,更进一步增加了赤字。下面哪一项关于公交乘客数量与
邓小平指出:“改革是中国的第二次革命”,这一论断的含义是指
如果I/O所花费的时间比CPU处理时间短得多,则缓冲区( )Ⅰ.最有效Ⅱ.几乎无效Ⅲ.均衡
PhyllisWheatleyisregardedasAmerica’sfirstblackpoet.ShewasborninSenegal,Africa,about1753andbroughttoAmericaa
最新回复
(
0
)