首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若A,B均为n阶矩阵,且A2=A,B2=B,r(A)=r(B),证明:A,B必为相似矩阵.
若A,B均为n阶矩阵,且A2=A,B2=B,r(A)=r(B),证明:A,B必为相似矩阵.
admin
2018-09-20
83
问题
若A,B均为n阶矩阵,且A
2
=A,B
2
=B,r(A)=r(B),证明:A,B必为相似矩阵.
选项
答案
由A
2
=A,可知A的特征值为0或1,对应于0,1的线性无关的特征向量的个数分别为n-r(0.E—A)与n一r(1.E一A). 又由于A
2
-A=O,即A(A—E)=O,则r(A)+r(A—E)≤n,于是A的线性无关的特征向量的总个数为 n一r(0.E一A)+n一r(1.E一A)=2n一[r(-A)+r(E一A)]≥2n-n=n, 故A有n个线性无关的特征向量,则A可相似对角化. 同理,B也可相似对角化,且由题设,r(A)=r(B),可知A,B有完全相同的特征值,即A,B相似于同一对角矩阵.故A,B必相似.
解析
转载请注明原文地址:https://kaotiyun.com/show/ikW4777K
0
考研数学三
相关试题推荐
四元非齐次线性方程组AX=b有三个解向量α1,α2,α3且r(A)=3,设α1+α2=α2+α3=求方程组AX=b的通解.
设ATA=E,证明:A的实特征值的绝对值为1.
已知有三个线性无关的特征向量,则a=________.
设总体x的密度函数为f(x,θ)=(一∞<z<+∞),求参数θ的矩估计量和最大似然估计量.
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn一1=αn,Aαn=0.证明:α1,α2,…,αn线性无关;
设随机变量X服从参数为2的指数分布,证明:Y=1一e一2X在区间(0,1)上服从均匀分布.
设X的密度函数为fX(x)=(一∞<x<+∞),求Y=1一密度fY(y).
设函数f(x)满足xf’(x)一2f(x)=一x,且由曲线y=f(x),x=1及x轴(x≥0)所围成的平面图形为D.若D绕x轴旋转一周所得旋转体体积最小,求:曲线y=f(x);
行列式
(88年)已给线性方程组问k1和k2各取何值时,方程组无解?有唯一解?有无穷多解?在方程组有无穷多解的情形下,试求出一般解.
随机试题
根据法国1791年宪法,积极公民与消极公民的区分在于是否缴纳()
患者,女性,45岁。晨起刷牙时发现口角漏水,家人发现其右侧口角下垂,右眼裂变大,用力闭眼仍不能闭合。临床检查发现除上述外观表现外,右侧舌前2/3味觉迟钝,同侧舌、颊及口底黏膜较对侧均显无光泽、干燥,听力检查右侧明显较对侧差。对该患者目前最恰当的治疗应选择
患者,女,59岁,近日出现喘息、咳嗽、胸闷等症状,夜间及凌晨发作加重,呼吸较困难,并伴有哮音,临床诊断支气管哮喘。医生给其用沙丁胺醇气雾剂及丙酸氟替卡松气雾剂。气雾剂起效较快,下列有关气雾剂的吸收,说法错误的是()。
极限的值是()。
某工程公司承揽了幸福住宅小区建设项目。开工前,该项目的项目经理编制工作任务分工表,首先要对各项管理任务进行()。
按照国际惯例,当不可抗力事件的发生影响到合同的履行时,当事人必须及时通知对方,否则它将承担由于其疏忽(未及时发出通知)给对方所造成的额外经济损失。()
已知经营杠杆为2,固定成本为4万元,利息费用为1万元,则已获利息倍数为()。
洛阳牡丹是富贵花,“性宜冷畏热,喜燥恶湿。得新土地,则根旺,栽向阳,能性舒”。因此,种植牡丹要选择地势高、土质松、排水好的地方。洛阳牡丹不仅具有很高的观赏价值,而且是名贵的中药材。由洛阳牡丹加工的丹皮,久服可健身益寿。这段话主要说明了()。
使新创建的线程参与运行调度的方法是
从工程管理角度看,软件设计一般分为两步完成,它们是
最新回复
(
0
)