首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4都是n维向量.判断下列命题是否成立. ①如果α1,α2,α3线性无关,α4不能用α1,α2,α3线性表示,则α1,α2,α3,α4线性无关. ②如果α1,α2线性无关,α3,α4都不能用α1,α2线性表示,则α1,α
设α1,α2,α3,α4都是n维向量.判断下列命题是否成立. ①如果α1,α2,α3线性无关,α4不能用α1,α2,α3线性表示,则α1,α2,α3,α4线性无关. ②如果α1,α2线性无关,α3,α4都不能用α1,α2线性表示,则α1,α
admin
2019-03-18
87
问题
设α
1
,α
2
,α
3
,α
4
都是n维向量.判断下列命题是否成立.
①如果α
1
,α
2
,α
3
线性无关,α
4
不能用α
1
,α
2
,α
3
线性表示,则α
1
,α
2
,α
3
,α
4
线性无关.
②如果α
1
,α
2
线性无关,α
3
,α
4
都不能用α
1
,α
2
线性表示,则α
1
,α
2
,α
3
,α
4
线性无关.
③如果存在n阶矩阵A,使得Aα
1
,Aα
2
,Aα
3
,Aα
4
线性无关,则α
1
,α
2
,α
3
,α
4
线性无关.
④如果α
1
=Aβ
1
,α
2
=Aβ
2
,α
3
=Aβ
3
,α
4
=Aβ
4
,其中A可逆,β
1
,β
2
,β
3
,β
4
线性无关,则α
1
,α
2
,α
3
,α
4
线性无关.
其中成立的为________.
选项
答案
①,③,④.
解析
①直接从定理得到.
②明显不对,例如α
3
不能用α
1
,α
2
线性表示,而α
3
=α
4
时,α
3
,α
4
都不能用α
1
,α
2
线性表示但是α
1
,α
2
,α
3
,α
4
线性相关.
③容易用秩说明:Aα
1
,Aα
2
,Aα
3
,Aα
4
的秩即矩阵(Aα
1
,Aα
2
,Aα
3
,Aα
4
)的秩,而(Aα
1
,Aα
2
,Aα
3
,Aα
4
)=A(α
1
,α
2
,α
3
,α
4
),由矩阵秩的性质④,
r(Aα
1
,Aα
2
,Aα
3
,Aα
4
)≤r(α
1
,α
2
,α
3
,α
4
).Aα
1
,Aα
2
,Aα
3
,Aα
4
无关,秩为4,于是α
1
,α
2
,α
3
,α
4
的秩也一定为4,线性无关.
④也可从秩看出:A可逆时,r(α
1
,α
2
,α
3
,α
4
)=r(Aα
1
,Aα
2
,Aα
3
,Aα
4
)=4.
转载请注明原文地址:https://kaotiyun.com/show/ioV4777K
0
考研数学二
相关试题推荐
已知方程组有解,证明:方程组无解。
设函数f(x)在[0,+∞)上可导,f(0)=1,且满足等式求导数f’(x);
二元函数f(x,y)=x2(2+y2)+ylny的极小值为=_________。
设二次型f(x1,x2,x3)=2x12-x22+ax32+2x1x2-8x1x3+2x2x3在正交变换x=Oy下的标准型为λ1y12+λ2y22,求a的值及一个正交矩阵Q.
求y=的反函数的导数。
已知的一个特征向量.(1)试确定a,b的值及特征向量ξ所对应的特征值;(2)问A能否相似于对角阵?说明理由.
已知二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为y12+y22,且Q的第3列为(Ⅰ)求矩阵A;(Ⅱ)证明A+E为正定矩阵,其中E为3阶单位矩阵.
设函数f(x)=若反常积分∫1+∞f(x)dx收敛,则
设f(x)在(a,b)连续,x1,x2,…,xn∈(a,b),α1,α2,…,αn为任意n个正数,求证:ξ∈(a,b),使得
设u=,其中f(s,t)二阶连续可偏导,求du及
随机试题
严重少精子症患者精子密度不高于:
根据自然人、法人或者其他组织的申请,公证机构要办理哪些公证事项。
大肠癌诊断和术后监测最有意义的肿瘤标志物是
患犬,2.5岁,雌性,就诊时精神沉郁,食欲废绝,尿血,尿频,呕吐,体温38.9℃,可视黏膜苍白,心音减弱,于膀胱部可触及质地较硬的硬块,膀胱壁增厚,且疼痛感明显,如需确诊需进行下列哪项检查
陈芳是一名刚毕业的大学生,她打算通过个人住房商业贷款来进行融资。陈芳可以选择的个人住房商业性贷款的贷款方式不包括( )。
江西省降水丰沛,有4个多雨区,分别是()。
2,6,13,39,15,45,23,()
在我国逻辑哲学的研究刚刚起步时,人们致力于引进、学习西方逻辑哲学理论。因此,部分学者产生一种____________,似乎西方逻辑哲学的理论就是逻辑哲学的唯一真理。他们对待西方逻辑哲学理论,不是采取批判的态度,去其糟粕,取其精华,并以之作为构建我国逻辑哲学
简述一个好的选题应该具备的特点。
A条件(1)充分,但条件(2)不充分B条件(2)充分,但条件(1)不充分C条件(1)和(2)单独都不充分,但条件(1)和(2)联合起来充分D条件(1)充分,条件(2)也充分E条件(1)和(2)单独都不充分,条件(1)和(2)联合起来也不充分都学
最新回复
(
0
)