首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn一1=αn,Aαn=0.证明: α1,α2,…,αn线性无关;
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn一1=αn,Aαn=0.证明: α1,α2,…,αn线性无关;
admin
2016-10-24
82
问题
设A是n阶矩阵,α
1
,α
2
,…,α
n
是n维列向量,且α
n
≠0,若Aα
1
=α
2
,Aα
2
=α
3
,…,Aα
n一1
=α
n
,Aα
n
=0.证明:
α
1
,α
2
,…,α
n
线性无关;
选项
答案
令x
1
α
1
+x
2
α
2
+…+x
n
α
n
=0,则 x
1
Aα
1
+x
2
Aα
2
+…+x
n
Aα
n
=0[*]x
1
α
2
+x
2
α
3
+…+x
n一1
α
n
=0 x
1
Aα
2
+x
2
Aα
3
+…+x
n一1
Aα
n
=0[*]x
1
α
3
+x
2
α
4
+…+x
n一2
α
n
=0 x
1
α
n
=0 因为α
n
≠0,所以x
1
=0,反推可得x
2
=…=x
n
=0,所以α
1
,α
2
,…,α
n
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/ipT4777K
0
考研数学三
相关试题推荐
将13个分别写有A、A、A、C、E、H、I、I、M、M、N、T、T的卡片随意地排成一行,求恰好排单词“MATHEMATICIAN”的概率.
[*]
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
高射炮向敌机发射三发炮弹(每弹击中与否相互独立),设每发炮弹击中敌机的概率均为0.3.又知若敌机中一弹,其坠落的概率为0.2;若敌机中两弹,其坠落的概率为0.6;若敌机中三弹则必然坠落.(1)求敌机被击落的概率;(2)若敌机被击落,求它中两弹的概率.
设E,F是两个事件,判断下列各结论是否正确,如果正确,说明其理由;如果不正确,给出其反例.(1)P(E∩F)≤P(E|F);(2)P(E∩F|F)=P(E|F).
如果n个事件A1,A2,…,An相互独立,证明:
写出下列各试验的样本空间:(1)掷两枚骰子,分别观察其出现的点数;(2)观察一支股票某日的价格(收盘价);(3)一人射靶三次,观察其中靶次数;(4)一袋中装有10个同型号的零件,其中3个合格7个不合格,每次从中随意取
设X1,X2,…,Xn(n>1)是来自总体N(μ,σ2)的随机样本,用2X2-X1,及X1作总体参数μ为估计算时,最有效的是_______.
设总体X服从(0,θ](θ>0)上的均匀分布,X1,X2,…,Xn是来自总体X的样本,求θ的最大似然估计量与矩估计算.
随机试题
椎孔
马致远的《天净沙.秋思》是一篇
某昏迷患者急诊入院,呼吸中有烂苹果味,可拟诊为
商品住宅等经营性用地可以采用协议出让国有土地使用权方式,来获取土地使用权。
分存控制法是()的简化应用。
仲裁裁决作出后,一方当事人就同一纠纷再申请仲裁或者向人民法院起诉的,仲裁委员会或者人民法院不予受理。()
以下说法正确的是()
下列情形中当事人不能取得刑事赔偿权利的是()。
召开一个专家座谈会。会上单位领导与一位专家发生激烈争辩,专家愤然离场,你作为座谈会的组织者该怎么做?
在人际关系问题上我们不要太浪漫主义。人是很有趣的,往往在接触一个人时首先看到的都是他或她的优点。这一点颇像是在餐馆里用餐的经验。开始吃头盘或冷碟的时候,印象很好。吃头两个主菜时,也是赞不绝口。愈吃愈趋于冷静,吃完了这顿宴席,缺点就都找出来了。于是转喜为怒,
最新回复
(
0
)