首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)·f(b) >0 试证:对存在点ξ∈(a,b),使得f’(ξ)=kf(ξ).
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)·f(b) >0 试证:对存在点ξ∈(a,b),使得f’(ξ)=kf(ξ).
admin
2020-03-05
8
问题
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)·f(b) >0
试证:对
存在点ξ∈(a,b),使得f’(ξ)=kf(ξ).
选项
答案
令F(x)=e
-kx
f(x),则由题设可知,F(x)在[a,b]上连续.不妨假定 f(a)>0,于是有 f(b)>0,[*] 由e
-kx
>0可知,F(a)0,[*]F(b)>0,由介值定理,存在点[*]使得F(x
1
)=F(x
2
)=0.所以F(x)在[x
1
,x
2
]上连续,在(x
1
,x
2
)内可导,且F(x
1
)=F(x
2
)=0.由洛尔定理,存在点ξ∈(x
1
,x
2
)[*](a,b),使得F’(ξ)=0,即e
-kξ
[f’(ξ)一 f(ξ)]=0,故有 f’(ξ)一kf(ξ)=0.
解析
欲证存在点ξ∈(a,b),使得 f’(ξ)一 kf(ξ)=0,即e
-kξ
[f’(ξ)一kf(ξ)]=0,即 [e
-kx
f(x)]’|
x=ξ
=0.
可作辅助函数:F(x)=e
-kx
f(x),用介值定理和洛尔定理证明.
本题所构造的辅助函数F(x)=e
-kx
f(x),不满足洛尔定理的第三个条件.于是利用介值定理再次构造使用洛尔定理的辅助区间[x
1
,x
2
],从而为用洛尔定理解决问题提供了条件.
转载请注明原文地址:https://kaotiyun.com/show/irS4777K
0
考研数学一
相关试题推荐
设A为二阶矩阵,且A的每行元素之和为4,且|E+A|=0,则|2E+A2|为().
给出如下5个命题:(1)若不恒为常数的函数f(x)在(一∞,+∞)内有定义,且x0≠0是f(x)的极大值点,则一x0必是一f(一x)的极大值点;(2)设函数f(x)在[a,+∞)上连续,f’’(x)在(a,+∞)内存在且大于零,则F(x)=在(a,+∞
若由曲线y=,曲线上某点处的切线以及x=1,x=3围成的平面区域的面积最小,则该切线是().
设n阶可逆矩阵A的一个特征值是-3,则矩阵必有一个特征值为_______.
AX=0和BX=0都是n元方程组,下列断言正确的是().
I(x)=∫0xdμ在区间[-1,1]上的最大值为________.
设总体X~N(a,2),y~N(b,2),且独立,由分别来自总体X和Y的容量分别为m和n的简单随机样本得样本方差SX2和SY2,则统计量T=[(m-1)SX2+(n=1)SY2]服从的分布是______.
设f(x)与g(x)在[a,b]上连续,且同为单调不减(或同单调不增)函数,证明:(b一a)∫abf(x)g(x)dx≥∫abf(x)dx∫abg(x)dx.(*)
设随机变量U在区间[一2,2]上服从均匀分布。随机变量试求:X和Y的联合概率分布;
[2003年]已知平面上三条不同直线的方程分别为l1:ax+2by+3c=0,l2:bx+2cy+3a=0,l3:cx+2ay+3b=0.试证三条直线交于一点的充分必要条件为a+b+c=0.
随机试题
可引起肾素分泌增多的因素有
骨关节炎最早的病理变化发生在
一母马,草料迟细,体瘦毛焦,倦怠肯卧,肚腹虚胀,尿短粪稀,口色淡黄,舌苔白,脉缓濡。该病中兽医辨证属于
当采用烘干法测定细集料的含水率时,为了缩短烘干时间,可以提高烘干温度。这对试验结果不会有影响。()
油轮在港口装卸区装卸油品的防火措施包括()。
下列费用项目中,属于其他项目清单内容列项是()。
金融企业会计实务中的“清算资金往来”属于()科目。
企业以经营租赁方式租入的固定资产发生的改良支出,应予资本化,计入固定资产成本,并计提折旧。()
看你很好强,把公务员看成跳板,干不长,是吗?
AnonymityisnotsomethingwhichwasinventedwiththeInternet.Anonymityandpseudonymityhasoccurredthroughouthistory.For
最新回复
(
0
)