首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求A=的特征值和特征向量.
求A=的特征值和特征向量.
admin
2018-11-20
50
问题
求A=
的特征值和特征向量.
选项
答案
(1)特征值的计算 可按常规方法计算特征值:求出A的特征多项式,求其根得特征值…….但本题可利用特征值的性质很容易求出特征值. r(A)=1,tr(A)=4.利用特征值的性质直接可得到A的特征值为0,0,0,4. (不用性质,也可这样计算:r(A)=1,即r(A—0E)=1,于是0是A的特征值,并且其重数k≥4一r(A)=3.即A的4个特征值中至少有3个为0.于是第4个特征值为tr(A)=4.) (2)求特征向量 属于0的特征向量是AX=0的非零解. [*] AX=0和x
1
+x
2
+x
3
+x
4
=0同解.得AX=0的一个基础解系η
1
=(1,一1,0,0)
T
,η
2
=(1,0,一1,0)
T
,η
3
=(1,0,0,一1)
T
.属于0的特征向量的一般形式为 c
1
η
1
+c
2
η
2
+c
3
η
3
,c
1
,c
2
,c
3
不全为0. 属于4的特征向量是(A一4E)X=0的非零解. [*] 得(A一4E)X=0的同解方程组 [*] 得(A一4E)X=0的基础解系η=(1,1,1,1)
T
.属于4的特征向量的一般形式为cη,c≠0.
解析
转载请注明原文地址:https://kaotiyun.com/show/iwW4777K
0
考研数学三
相关试题推荐
设n阶矩阵A满足A2+2A一3E=0.求:(A+4E)一1.
二次型f(x1,x2,x3)=x12+ax22+x32一4x1x2一8x1x3一4x2x3经过正交变换化为标准形5y12+by22一4y32,求:常数a,b;
设二次型f(x1,x2,x3)=XTAX,A的主对角线上元素之和为3,又AB+B=0,其中求正交变换X=QY将二次型化为标准形;
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,f()一1,f(1)=0.证明:对任意的k∈(一∞,+∞),存在ξ∈(0,η),使得f’(ξ)一k[f(ξ)一ξ]=1.
设矩阵A满足(2E一C一1B)AT=C一1,且求矩阵A.
设α1,α2,α3,β1,β2都是四维列向量,且|A|=|α1,α2,α3,β1|=m,|B|=|α1,α2,β2,β3|=n,则|α1,α2,β1+β2|为().
10件产品有3件次品,7件正品,每次从中任取一件,取后不放回,求下列事件的概率:第三次取得次品;
设A为二阶矩阵,α1,α2为线性无关的二维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为________。
设总体X~N(0,σ2),参数σ>0未知,X1,X2,…,Xn是取自总体X的简单随机样本(n>1),令估计量
若行列式的某个元素aij加1,则行列式的值增加Aij.
随机试题
机体的内环境指的是
自然人甲与乙订立借款合同,其中约定甲将自己的一辆汽车作为担保物让与给乙。借款合同订立后,甲向乙交付了汽车并办理了车辆的登记过户手续。乙向甲提供了约定的50万元借款。一个月后,乙与丙公司签订买卖合同,将该汽车卖给对前述事实不知情的丙公司并实际交付给
具有择时能力的基金经理一般在熊市时降低现金头寸或提高基金组合的β值。()
金融制度创新使商业银行与投资银行业务领域的界限()。
锌是人体必需的微量元素,被称为“生命之花”,很多家长开始意识到锌对孩子成长的重要性,热衷于给孩子补锌。殊不知,人体需要的锌并不多,补锌过量会造成严重危害。这说明()。
在著名的优质麦产区山东省兖州市,国际粮商与改制后的基层粮管所合作,利用其收储网络大量收购小麦、玉米等粮源,形成具有一定规模的收储网络。在不断复制这种模式的同时,在国内企业已经进驻的地方,国际粮商开设面粉加工企业,利用掌握的优质粮源以及低价策略挤压国内企业生
Formanypeopletoday,readingisnolongerrelaxation.Tokeepuptheirwork,theymustreadletters,reports,tradepublicatio
DothefollowingstatementsagreewiththeinformationgiveninReadingPassage1?Inboxes10-13onyouranswersheet,writeTR
Thefineneedlesareused______.Whyaresometattooistscalled"responsible"?
RaisingWiseConsumersAlmostanyonewithaprofitmotiveismarketingtoinnocents.Helpyourkidsunderstandit’sOKnott
最新回复
(
0
)