首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2001年试题,九)设α1,α2……αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,β3=t1α1+t2α1,其中t1,t2为实常数,试问t1,t2满足什么关系时,β1,β2,…,βs,也为Ax=0的一个基
(2001年试题,九)设α1,α2……αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,β3=t1α1+t2α1,其中t1,t2为实常数,试问t1,t2满足什么关系时,β1,β2,…,βs,也为Ax=0的一个基
admin
2014-05-20
67
问题
(2001年试题,九)设α
1
,α
2
……α
s
为线性方程组Ax=0的一个基础解系,β
1
=t
1
α
1
+t
2
α
2
,β
2
=t
1
α
2
+t
2
α
3
,…,β
3
=t
1
α
1
+t
2
α
1
,其中t
1
,t
2
为实常数,试问t
1
,t
2
满足什么关系时,β
1
,β
2
,…,β
s
,也为Ax=0的一个基础解系.
选项
答案
根据题设β
i
(i=1,2,…,s)是α
1
,α
2
……α
s
的线性组合,因此β
i
(i=l,2,…,s)都是Ax=0的解,即Aβ
i
=0(i=1,2,…,s)题目待求结论要求β
i
(i=1,2,…,s)也是Ax=0的基础解系,结合已知,这等价于要求β
1
β
2
……β
t
,线性无关,于是设c
1
β
1
+c
2
β
2
+…+c
s
β
s
=0将已知β
i
(i=1,2,…,s)由α
i
(i=l,2,…,s)线性表示的已知表达式代入上式并化简得(t
1
c
1
+t
2
c
s
)α
1
+(t
2
c
1
+t
1
c
2
)α
2
+…+(t
2
c
s-1
一1+t
1
c
s
)α
s
=0因为α
1
,α
2
……α
s
是线性无关的,因此得到关于c
1
,c
2
……c
s
的方程组如下[*]只要该方程组只有零解,即可得出t
1
,t
2
应满足的关系,该方程组行列式为[*]因此当s为偶数时,|t
1
|≠|t
2
|;当s为奇数时,t
1
≠一t
2
,有β
1
β
2
……β
s
也为Ax=0的一个基础解系.
解析
本题涉及基础解系的概念和线性无关的证明以及行列式的计算,综合性很强.
转载请注明原文地址:https://kaotiyun.com/show/iy54777K
0
考研数学一
相关试题推荐
设区域D是由y=x,x2+y2=2x,x轴所围成的第一象限的部分,求:(Ⅰ)区域D绕x轴旋转所得旋转体的体积;(Ⅱ)区域D绕x=2旋转所得旋转体的体积.
求极限
设A,B为3阶矩阵,已知A的特征值为-1,0,3,AB+A=B+2E,则与B-1+E相似的对角矩阵为______________.
f(x,y)dy改变积分次序为().
设α=arcsinx-x,,当x→0时,无穷小的阶数由低到高的次序为().
设D是由直线y=x+3,y=x/2-5/2,y=π/2及y=π/2所围成的平面区域,则二重积分I=(1+x)dxdy=________.
设y=,且f’(x)=arctanx2,求|x=0=__________.
设函数f(x)连续,且∫0xtf(2x—t)dt=arctanx2,已知f(1)=0,求∫12f(x)dx.
y=2x的麦克劳林公式中xn项的系数是_________.
(2005年试题,一)设Ω是由锥面与半球面围成的空间区域,∑是Ω的整个边界的外侧,则
随机试题
门静脉高压症病人术后的体位与活动。
WhatMakesUsDifferentThereasonEarthdiffers(differ)fromalltheother【C1】________(planet)intheuniverseisbecause
下列关于男性生殖器的叙述,错误的是()
孔子思想的核心是()
关于深Ⅱ度烧伤的描述,错误的是()
海关工作人员在调查处理违法案件时,遇到有下列()情形之一的,应当回避。
根据《中华人民共和国劳动合同法》的规定,以下属于劳动合同必备条款的是()。
1991年召开的第十九次全国公安会议明确提出,建立强有力的公安工作,必须首先建设强大的公安队伍,走质量强警之路。( )
WhichoneisNOTtrueaboutthebigfire?
Stratford-upon-Avonisanunremarkablemarkettownbut【C1】______onelittledetail:in1564,thewifeofalocalmerchant,John
最新回复
(
0
)