首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=是可逆矩阵,且A-1=,若C=,则C-1=_______.
设A=是可逆矩阵,且A-1=,若C=,则C-1=_______.
admin
2018-12-21
38
问题
设A=
是可逆矩阵,且A
-1
=
,若C=
,则C
-1
=_______.
选项
答案
[*]
解析
经观察,C是由A经初等变换得到的,A的第1,2行互换后,再将第3列加到第1列得到C,即C=E
12
AE
31
(1),故
C
-1
=[E
12
AE
31
(1)]
-1
=E
31
-1
(1)A
-1
E
12
-1
=E
31
(-1)A
-1
E
12
转载请注明原文地址:https://kaotiyun.com/show/jAj4777K
0
考研数学二
相关试题推荐
(2002年)设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对于任意常数k,必有【】
(2013年)设二次型f(χ1,χ2,χ3)=2(a1χ1+a2χ2+a3χ3)+(b1χ1+b2χ2+b3χ3)2,记(Ⅰ)证明二次型f对应的矩阵为2ααT+ββT.(Ⅱ)若α,β正交且均为单位向量,证明f在正交变换下的标准形为
(2012年)已知函数f(χ)满足方程f〞(χ)+f′(χ)-2f(χ)=0及f〞(χ)+f(χ)=2eχ.(Ⅰ)求f(χ)的表达式;(Ⅱ)求曲线y=f(χ2)∫0χf(-t2)dt的拐点.
(1989年)证明方程lnχ=在区间(0,+∞)内有且仅有两个不同实根.
(1989年)设f(z)=在χ=0处连续,则常数a与b应满足的关系是______.
(1995年)设f(χ)和φ(χ)在(-∞,+∞)内有定义,f(χ)为连续函数,且f(χ)≠0,φ(χ)有间断点,则
已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表示式的系数全不为零,证明:α1,α2,…,αs,β中任意5个向量线性无关.
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n),二次型f(χ1,χ2,…,χn)=χiχj.(1)记X=(χ1,χ2,…,χn)T,把f(χ1,χ2,…,χn)写成矩阵形式,并证
[*]由于因此原式=eln2/2=
随机试题
下列选项中属于因果关系的是()
产后出血的最主要原因是
糖尿病是一组以高血糖为特征的代谢性疾病。高血糖则是由于胰岛素分泌缺陷或其生物作用受损,或两者兼有引起。糖尿病时长期存在的高血糖,导致各种组织,特别是眼、肾、心脏、血管、神经的慢性损害、功能障碍。目前尚无根治糖尿病的方法,但通过多种治疗手段可以控制好糖尿病。
中医学里的脏腑,除了指解剖的实质脏器,更重要的是对人体生理功能和病理变化的概括。中医学认为,人的有机整体是以五脏为核心构成的一个极为复杂的统一体,它以五脏为主,配合六腑,以经络作为网络,联系躯体组织器官,形成5大系统。利小便而实大便的理论依据是
调整盘盈或盘亏财产的账面价值时,处理前“待处理财产损溢”的借方余额反映()。
下列关于独立估计的说法中,错误的有()。
学生干部选举前,有的家长给班主任陈老师送束花要求照顾,陈老师拒绝。这件事体现了陈老师()。
阅读下面的文言文,完成下列例题。张佶,字仲雅,本燕人,后徙华州渭南。初名志言,后改焉。父防,殿中少监。佶少有志节,始用荫补殿前承旨,以习儒业,献文求试,换国子监丞。迁著作佐郎、监三白渠、知泾阳县。端拱初,为太子右赞善大夫。曹州民有被诬杀人者,诏往
Whoisthespeaker?
IntargetingconsumerswhatPepsicallsthe"PowerofOne"makesperfectsense:it’sallaboutmakingsure.thateverybodywhob
最新回复
(
0
)