设f(x)为连续函数,且满足f(xt)dt=f(x)+xsinx,则f(x)=_____________.

admin2019-11-25  47

问题 设f(x)为连续函数,且满足f(xt)dt=f(x)+xsinx,则f(x)=_____________.

选项

答案cosx-xsinx+C

解析f(xt)dt=f(x)+xsinx,得f(xt)d(xt)=xf(x)+x2sinx,即
f(t)dt=xf(x)+x2sinx,两边求导得f’(x)=-2sinx-xcosx,积分得
f(x)=cosx-xsinx+C.
转载请注明原文地址:https://kaotiyun.com/show/jBD4777K
0

最新回复(0)