首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[a,b]上具有二阶导数,且 f(a)=f(b)=0,f’(a)f’(b)>0, 试证明:存在ξ∈(a,b)和η∈(a,b),使f(ξ)=0及f"(η)=0。
设f(x)在区间[a,b]上具有二阶导数,且 f(a)=f(b)=0,f’(a)f’(b)>0, 试证明:存在ξ∈(a,b)和η∈(a,b),使f(ξ)=0及f"(η)=0。
admin
2019-03-21
48
问题
设f(x)在区间[a,b]上具有二阶导数,且
f(a)=f(b)=0,f’(a)f’(b)>0,
试证明:存在ξ∈(a,b)和η∈(a,b),使f(ξ)=0及f"(η)=0。
选项
答案
首先证明存在ξ∈(a,b),使f(ξ)=0。 方法一:用零点定理。主要是要证明f(x)在(a,b)有正值点与负值点。不妨设 f’(a)>0,f’(b)>0。 由[*]=f’
+
(a)=f’(a)>0与极限的局部保号性,知在x=a的某右邻域,[*]>0,从而f(x)>0,因而存在x
1
,b>x
1
>a,f(x
1
)>0;类似地,由f’(b)>0可证存在x
2
,x
1
<x
2
<b,f(x
2
)<0。由零点定理,存在ξ∈(x
1
,x
2
)[*](a,b),使f(ξ)=0。 方法二:反证法。假设在(a,b)内f(x)≠0,则由f(x)的连续性可得f(x)>0,或f(x)<0,不妨设f(x)>0。由导数定义与极限局部保号性, f’(a)=f’
+
(a) [*] f’(b)=f’
-
(b) [*] 从而f’(a)f’(b)≤0,与f’(a)f’(b)>0矛盾。 其次,证明存在η∈(a,b),f"(η)=0。 由于f(a)=f(ξ)=f(b)=0,根据罗尔定理,存在η
1
∈(a,ξ),η
2
∈(ξ,b),使f’(η
1
)=f’(η
2
)=0;又由罗尔定理, η∈(η
1
,η
2
)[*](a,b),f"(η)=0。 注:由f’(x
0
)>0可得:在(x
0
-δ,x
0
)上,f(x)<f(x
0
);在(x
0
,x
0
+δ)上,f(x)>f(x
0
)。由f’(x
0
)>0得不到f(x)在(x
0
-δ,x
0
+δ)单调增的结果。
解析
转载请注明原文地址:https://kaotiyun.com/show/jFV4777K
0
考研数学二
相关试题推荐
设k为常数,则=________.
求下列二重积分:(Ⅰ)I=,其中D为正方形域:0≤x≤1,0≤y≤1;(Ⅱ)I=|3x+4y|dxdy,其中D:x2+y2≤1;(Ⅲ)I=,其中D由直线x=-2,y=0,y=2及曲线x=所围成.
证明:=0.
设4阶矩阵A=(α,γ1,γ2,γ3),B=(β,γ2,γ3,γ1),|A|=a,|B|=b,求|A+B|.
讨论f(χ,y)=在点(0,0)处的连续性、可偏导性及可微性.
0本题属于基本计算,考研中多次考过这种表达式.
已知摆线的参数方程为其中0≤t≤2π,常数a>0.设该摆线一拱的弧长的数值等于该弧段绕z轴旋转一周所围成的旋转曲面面积的数值.求a的值.
(2005年试题,一)
在t=0时,两只桶内各装10L的盐水,盐的浓度为15g/L,用管子以2L/min的速度将净水输入到第一只桶内,搅拌均匀后的混合液又由管子以2L/min的速度被输送到第二只桶内,再将混合液搅拌均匀,然后用1L/min的速度输出.求在任意时刻t>0,从第二只桶
随机试题
压力变送器是根据力平衡原理来测量的。
寒、热、痰、湿、瘀、郁,犯及冲任导致冲任阻滞,治宜疏通冲任,代表方有
对重度休克病人纠正代谢性酸中毒时,下列哪项不宜使用:
钢筋混凝土水处理构筑物的浇筑层高度一般为振捣器作用部分长度的1.25倍,最大不超过()mm。
“备案号”栏应填:“原产国”栏应填:
费率是指利率以外的银行提供信贷服务的价格,一般以信贷产品金额为基数,按一定比率计算。()(2010年上半年)
法是一种社会规范,同道德规范、职业规范相比,具有以下特点()。
班主任对一个班集体的发展起()。
下列VisualBasic变量名中,正确的是()。
描述计算机内存容量的参数,正确的是()。
最新回复
(
0
)