首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=(a1,a2,a3,a4),其中a2,a3,a4线性无关,a1=2a2-a3,向量b=a1+a2+a3+a4,求方程Aχ=b的通解.
设矩阵A=(a1,a2,a3,a4),其中a2,a3,a4线性无关,a1=2a2-a3,向量b=a1+a2+a3+a4,求方程Aχ=b的通解.
admin
2016-05-09
51
问题
设矩阵A=(a
1
,a
2
,a
3
,a
4
),其中a
2
,a
3
,a
4
线性无关,a
1
=2a
2
-a
3
,向量b=a
1
+a
2
+a
3
+a
4
,求方程Aχ=b的通解.
选项
答案
已知a
2
,a
3
,a
4
线性无关,则r(A)≥3.又显然a
1
,a
2
,a
3
线性相关,因此由a
1
,a
2
,a
3
,a
4
线性相关可知r(A)≤3. 终上所述,有r(A)=3,从而原方程的基础解系所含向量个数为4-3=1, a
1
=2a
2
-a
3
[*]a
1
-2a
2
+a
3
=0[*](a
1
,a
2
,a
3
,a
4
)[*]=0, 即χ=(1,-2,1,0)
T
满足方程Aχ=0,所以χ=(1,-2,1,0)
T
是该方程组的基础解系. 又b=a
1
+a
2
+a
3
+a
4
[*]χ=(1,1,1,1)
T
是方程Aχ=b的一个特解. 于是由非齐次线性方程组解的结构可知,原方程的通解为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Wgw4777K
0
考研数学一
相关试题推荐
已知三阶方阵A,B满足关系式E+B=AB,A的三个特征值分别为3,-3,0,则|B-1+2E|=________.
A是n阶矩阵,且A3=0,则().
[*]
已知二次型f(x1,x2,x3)=xTAx,A是3阶实对称矩阵,满足A2-2A-3E=O,且|A|=3,则该二次型的规范形为()
设f(x)在[0,﹢∞)上连续,且f(x)=dt在(Ⅱ)的基础上,任取x0>ξ>0,xn=2f(xn-1)(n≥1),证明:一ξ
求微分方程y"-y=4cosx+ex的通解.
设A=,已知A有三个线性无关的特征向量且λ=2为矩阵A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
设A为三阶实对称矩阵,为方组AX=0的解,为方程组(2E-A)X=0的一个解,|E+A|=0,则A=________.
设A,B为同阶方阵,(I)如果A,B相似,试证A,B的特征多项式相等.(Ⅱ)举一个二阶方阵的例子说明(I)的逆命题不成立.(Ⅲ)当A,B均实对称矩阵时,试证(I)的逆命题成立.
已知4阶方阵A=(α1,α2,α2,α4),α1,α2,α3,α4均为4维列向量,其α2,α3,α4线性无关,α=2α2-aα3,如果β=α1+α2+α3+α
随机试题
患者,男性,28岁。阵发性心悸3年,每次心悸突然发生,持续半小时至3小时不等。本次发作时心律齐,200次/分,按摩颈动脉窦心律能突然减慢至正常;心电图QRS波形态正常,P波不明显。诊断为()
患者,病由抑郁而起,腹部结块,或左或右,走窜不定,按之略痛,脘胁不舒,暖气频频,便艰纳呆,苔薄,脉弦。证属
头孢菌素类( )。甲氧苄胺嘧啶类( )。
下列关于期货公司的股东、实际控制人或者其他关联人在期货公司从事期货交易的表述,错误的是()。[2012年6月真题]
Forthefirsttime,morewomenthanmenintheUnitedStatesreceiveddoctoraldegreeslastyear,theclimaxofdecadesofchang
原型化并不是孤立出现的事件,它是一个很活跃的过程,受控于项目管理。项目管理的功能包括:质量、资源、成本、时间和【】。
如下图所示,3com和Cisco公司的交换机相互连接,在两台交换机之间需传输VLANID为1、10、20和30的4个VIAN信息,Catalyst3548交换机VLANTrunk的正确配置是()。
以下叙述中正确的是
Scottandhiscompanions(同伴)wereterriblydisappointed.WhentheygottotheSouthPole,theyfoundtheNorwegians(挪威人)hadbea
Wheredoesthisconversationmostlikelytakeplace?
最新回复
(
0
)