首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)是以ω为周期的连续函数,证明:一阶线性微分方程 y’+ky=f(x) 存在唯一的以∞为周期的特解,并求此特解,其中k≠0为常数.
设f(x)是以ω为周期的连续函数,证明:一阶线性微分方程 y’+ky=f(x) 存在唯一的以∞为周期的特解,并求此特解,其中k≠0为常数.
admin
2018-11-21
25
问题
设f(x)是以ω为周期的连续函数,证明:一阶线性微分方程
y’+ky=f(x)
存在唯一的以∞为周期的特解,并求此特解,其中k≠0为常数.
选项
答案
此线性方程的通解即所有解可表示为y(x)=e
-kx
[C+f:f(t)e
kt
dt]. y(x)以ω为周期,即y(x)=y(x+ω),亦即 e
-kx
[C+∫
0
x
f(t)e
kt
dt]=e
-kx—kω
[C+∫
0
x+ω
f(t)e
kt
dt]. → C+∫
0
x
f(t)e
kt
dt=e
-kx
[C+∫
0
x+ω
f(t)e
kt
dt][*]e
-kω
[C+∫
—ω
x
f(s+ω)e
ks+kω
ds] =Ce
-kω
+∫
—ω
0
f(s)eksds+∫
0
x
f(s)e
ks
ds. [*] 对应于这个C的特解就是以ω为周期的函数,而且这样的常数只有一个,所以周期解也只有一个.
解析
本题实际上求该方程的特解.对此,我们先求通解,然后利用周期性确定常数C.
转载请注明原文地址:https://kaotiyun.com/show/jOg4777K
0
考研数学一
相关试题推荐
设,其中a2+c2≠0,则必有()
设随机变量X和Y的联合密度为(Ⅰ)试求X的概率密度f(x);(Ⅱ)试求事件“X大于Y”的概率P{X>Y};(Ⅲ)求条件概率P{Y>1|X<0.5}。
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=tsαs+t2α1,其中t1,t2为实常数。试问t1,t2满足什么条件时,β1,β2,…,βs也为Ax=0的一个基础解系。
设α1,α2,…,αn是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
某试验性生产线每年1月份进行熟练工与非熟练工的人数统计,然后将,熟练工支援其他生产部门,其缺额由招收新的非熟练工补齐。新、老非熟练工经过培训及实践至年终考核有成为熟练工。设第n年1月份统计的熟练工与非熟练工所占百分比分别为xn和yn,记成向量(Ⅰ)求的关
已知向量组α1=(1,2,-1,1)T,α2=(2,0,t,0)T,α3=(0,-4,5,t)T线性无关,则t的取值范围为_______。
设∑为椭球面的上半部分,点P(x,y,z)∈∑,∏为∑在点P处的切平面,p(x,y,z)为点O(0,0,0)到平面∏的距离,求
具有特解y1=e-x,y2=2xe-x,y3=3ex的三阶常系数齐次线性微分方程是()
设曲线L:f(x,y)=1(具有一阶连续偏导数)过第二象限内的点M和第四象限内的点N,Γ为L上从点M到点N的一段弧,则下列积分小于零的是()
过坐标原点作曲线y=lnx的切线,该切线与曲线y=lnx及x轴围成平面图形D。(Ⅰ)求D的面积A;(Ⅱ)求D绕直线x=e旋转一周所得旋转体的体积V。
随机试题
在氯碱生产吸收HCl时产生的溶解热将液相不断加热,直至一定程度时部分水分汽化,将大部分溶解热除去的方法称为()。
X线穿过人体后。强度分布出现差异,称为
原发性脊柱侧弯是因为
久病、重病患者,原来不欲言语,语声低微,时断时续,突然转为言语不休的变化是
某事故调查组经过详细调查,查明了事故发生的各种原因,阐明了事故的直接经济损失,准备召开相关会议以认定事故的性质和相关责任。关于事故责任的有关说法中,正确的是()。
一切外来的原始凭证都是一次凭证。()
根据表格资料,回答问题:下列关于2008年我国城市、农村娱乐教育文化用品及服务消费量的说法正确的是()。
•Youwillhearatalkonimportregulations.•Foreachquestion23-30,markoneletter(A,BorC)forthecorrectanswer.•A
SlanginEnglishTodaywe’lldiscussacommonlinguisticphenomenoninEnglish—slang.Thefeaturesofslangarelisteda
TheotherdayIwaslisteningtoaChristianradioprogramonthewaytothegym.Eachdaytheyaskaquestionfortheirlistene
最新回复
(
0
)