首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)是以ω为周期的连续函数,证明:一阶线性微分方程 y’+ky=f(x) 存在唯一的以∞为周期的特解,并求此特解,其中k≠0为常数.
设f(x)是以ω为周期的连续函数,证明:一阶线性微分方程 y’+ky=f(x) 存在唯一的以∞为周期的特解,并求此特解,其中k≠0为常数.
admin
2018-11-21
49
问题
设f(x)是以ω为周期的连续函数,证明:一阶线性微分方程
y’+ky=f(x)
存在唯一的以∞为周期的特解,并求此特解,其中k≠0为常数.
选项
答案
此线性方程的通解即所有解可表示为y(x)=e
-kx
[C+f:f(t)e
kt
dt]. y(x)以ω为周期,即y(x)=y(x+ω),亦即 e
-kx
[C+∫
0
x
f(t)e
kt
dt]=e
-kx—kω
[C+∫
0
x+ω
f(t)e
kt
dt]. → C+∫
0
x
f(t)e
kt
dt=e
-kx
[C+∫
0
x+ω
f(t)e
kt
dt][*]e
-kω
[C+∫
—ω
x
f(s+ω)e
ks+kω
ds] =Ce
-kω
+∫
—ω
0
f(s)eksds+∫
0
x
f(s)e
ks
ds. [*] 对应于这个C的特解就是以ω为周期的函数,而且这样的常数只有一个,所以周期解也只有一个.
解析
本题实际上求该方程的特解.对此,我们先求通解,然后利用周期性确定常数C.
转载请注明原文地址:https://kaotiyun.com/show/jOg4777K
0
考研数学一
相关试题推荐
设某次考试的学生成绩服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分。问在显著性水平0.05下,是否可以认为这次考试全体考生的平均成绩为70分?并给出检验过程。附:t分布表P{t(n)≤tp(n)}=p
已知(X,Y)在以点(0,0),(1,-1),(1,1)为顶点的三角形区域上服从均匀分布。(Ⅰ)求(X,Y)的联合密度函数f(x,y);(Ⅱ)求边缘密度函数fX(x),fY(y)及条件密度函数fX(x|y),fY|X(y|x);并问X与Y是否独立;(
设X1,X2,…,Xn是取自总体X的简单随机样本,X的概率密度函数为f(x)=,-∞<x<+∞,则λ的最大似然估计量=______。
求二元函数z=f(x,y)=x2y(4-x-y)在直线x+y=6,x轴与y轴围成的闭区域D上的最大值与最小值。
已知向量组α1=(1,2,-1,1)T,α2=(2,0,t,0)T,α3=(0,-4,5,t)T线性无关,则t的取值范围为_______。
设连续型随机变量X的分布函数F(x)=求:(Ⅰ)常数A;(Ⅱ)X的密度函数f(x);(Ⅲ)
(Ⅰ)验证函数y(x)=(-∞<x<+∞)满足微分方程y’’+y’+y=ex;(Ⅱ)求幂级数y(x)=的和函数。
设方阵A1与B1合同,A2与B2合同,证明:合同。
设线性方程组已知(1,-1,1,-1)T是该方程组的一个解,求方程组所有的解。
已知随机变量Y~N(μ,σ2),且方程x2+x+y=0有实根的概率为,则未知参数μ=________。
随机试题
导致弥散性血管内凝血患者出血的主要原因是
有机磷农药中毒时,出现烟碱样症状的表现是()。
A.心脏毒性B.出血性膀胱炎C.肝损伤D.肺纤维化E.腹泻米托蒽醌可引起的主要不良反应()。
建设工程项目进度控制的管理措施涉及( )。
某汽车企业2004年第一季度汽车完成周转量200万吨公里,挂车完成周转量80万吨公里,拖运率为()。[2005年真题]
紧张、焦虑、恐惧等消极情绪出现,对身心健康都是有害无益的,应该尽量压抑这类情绪。()
商洽性文件的主要文种是()
Whereistheman?
Wherehavethefamilydecidedtogoforavacationthissummer?
如果你是一个中等水平的读者,你能够以每分钟300字的速度阅读一本中等水平的书。不过,你必须每天这样坚持下去,否则就无法保持这种水平。【T1】你也不可能以这个速度阅读科学、数学、农业、商业方面的书,或是对你来说内容生疏的书。(Nor…or…)你绝不会以这种速
最新回复
(
0
)