首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f’(x)>0.若极限存在,证明: (1)在(a,b)内f(x)>0; (2)在(a,b)内存在点ξ,使; (3)在(a,b)内存在与(2)中ξ相异的点η,使f’(η)(b2-a2)=。
设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f’(x)>0.若极限存在,证明: (1)在(a,b)内f(x)>0; (2)在(a,b)内存在点ξ,使; (3)在(a,b)内存在与(2)中ξ相异的点η,使f’(η)(b2-a2)=。
admin
2014-01-26
43
问题
设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f’(x)>0.若极限
存在,证明:
(1)在(a,b)内f(x)>0;
(2)在(a,b)内存在点ξ,使
;
(3)在(a,b)内存在与(2)中ξ相异的点η,使f’(η)(b
2
-a
2
)=
。
选项
答案
[详解1](1)因为f(x)在[a,b]上连续,且[*]存在,故 [*], 又f’(x)>0,于是f(x)在(a,b)内单调增加,故 f(x)>f(a)=0,x∈(a,b). (2)设F(x)=x
2
,g(x)=∫
a
x
f(t)dt(a≤x≤b),则g’(x)=f(x)>0,故F(x),g(x)满足柯西中值定理的条件,于是在(a,b)内存在点ξ,使 [*] (3)因f(ξ)=f(ξ)-f(0)=f(ξ)-(a),在[a,ξ]上应用拉格朗日中值定理,知在(a,ξ)内存在一点η,使f(ξ)=f’(η)(ξ-a),从而由(2)的结论得 [*], 即有[*]。 [详解2](1)同详解1. (2)设F(x)=x
2
∫
a
b
f(t)dt-(b
2
-a
2
)∫
a
x
1.f(t)dt,因f(x)在[a,b]上连续,在(a,b)内可导,所以F(x)在[a,b]上连续,在(a,b)内可导,且 F’(x)=2x∫
a
x
f(x)dt-(b
2
-a
2
)f(x), F(a)=a
2
∫
a
b
f(t)dt-(b
2
-a
2
)∫
a
a
f(t)dt=a
2
a
b
∫f(t)dt, F(b)=b
2
∫
a
b
f(t)dt-(b
2
-a
2
)∫
a
b
f(t)dt=a
2
∫
a
b
f(t)dt, 由罗尔定理知,在(a,b)内存在点ξ,使 F’(ξ)=2ξ∫
a
b
f(t)dt-(b
2
-a)
2
f(ξ)=0, 即[*] (3)由(1),(2)知, F’(ξ)-F’(a)=2(ξ-a)∫
a
b
f(t)dt-(b
2
-a
2
)f(ξ), 对F’(x)在[a,ξ]上应用拉格朗日中值定理,知至少存在一点η∈(a,ξ),使 [*] f(ξ)=f’(η)(ξ-a),从而 [*]
解析
[分析] (1)由
存在知,f(a)=0,利用单调性即可证明f(x)>0.(2)要证的结论显含f(a),f(b),应将要证的结论写为拉格朗日中值定理或柯西中值定理的形式进行证明.(3)注意利用(2)的结论证明即可.此题也可用罗尔定理证明.
[评注] 证明(3),关键是用(2)的结论:
可见对f(T)在区间[a,ξ]上应用拉格朗日中值定理即可.对于这类题目,应注意充分利用前面设的台阶,中值定理是高等数学的重点,而构造辅助函数又是解与中值定理有关的证明题的非常有用的方法之一,考生应逐步掌握这种方法,并在证明过程中注意推理的逻辑性和严密性.
转载请注明原文地址:https://kaotiyun.com/show/jQ34777K
0
考研数学二
相关试题推荐
玻璃杯成箱出售,每箱20只.设各箱含0,1,2只残次品的概率分别为0.8,0.1和0.1.一顾客欲购买一箱玻璃杯,由售货员任取一箱,而顾客开箱随机地察看4只:若无残次品,则买下该箱玻璃杯,否则退回,试求:(1)顾客买此箱玻璃杯的概率;(
(1987年)设求y’.
(11年)曲线y=,直线χ=2及χ轴所围的平面图形绕z轴旋转所成的旋转体的体积为_______.
(92年)设函数问函数f(χ)在χ=1处是否连续?若不连续,修改函数在χ=1处的定义使之连续.
(2015年)设函数f(x)在定义域I上的导数大于零,若对任意的x0∈I,由曲线y=f(x)在点(x0,f(x0))处的切线与直线x=x0及x轴所围成区域的面积恒为4,且f(0)=2,求f(x)的表达式。
(92年)某设备由三大部件构成.在设备运转中各部件需要调整的概率相应为0.10,0.20和0.30.设各部件的状态相互独立,以X表示同时需要调整的部件数,试求E(X)和D(X).
设A,B为两个随机事件,且P(A)=,P(B|A)=,P(A|B)=,令求:(Ⅰ)二维随机变量(X,Y)的概率分布;(Ⅱ)X与Y的相关系数ρ(X,Y);(Ⅲ)X=X2+Y2的概率分布.
[2004年]函数f(u,v)由关系式f[xg(y),y]=x+g(y)确定,其中函数g(y)可微,且g(y)≠0,则
(2004年)设函数f(u,v)由关系式f[xg(y),y]=x+g(y)确定,其中函数g(y)可微,且g(y)≠0,则=_______。
求极限
随机试题
一个测验能测到预先想测的知识和能力的程度,这里指的是测验的()
明确提出新生儿脐风是因断脐不慎,破伤风是一种疾病的著作是
A.青霉素钠B.头孢羟氨苄C.氨曲南D.替莫西林E.氨苄西林是单环β-内酰胺类抗生素
既属于五体,又属于奇恒之腑的是
下列哪些法规只报全国人大常委会备案?()
对企业在销售商品的同时授予给客户的奖励积分,下列会计处理中,错误的是()。
设函数,在(一∞,+∞)内连续,则c=____________.
Takemuchofwhatyouknowabouthowthebestexecutivesmakedecisions.Now,forgetit.Forinstance,weall"know"thattight
Thereisanincreasingdemandfor______.Thespecialistis______.
Industryhasgreatinfluenceoneveryaspectofthepeopleintheworld.Theindustrialsocietieshavebeenextremelyproductive
最新回复
(
0
)