首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设线性方程组 与方程 (Ⅱ):x1+2x2+x3=a-1 有公共解,求a的值及所有公共解.
设线性方程组 与方程 (Ⅱ):x1+2x2+x3=a-1 有公共解,求a的值及所有公共解.
admin
2021-01-25
79
问题
设线性方程组
与方程
(Ⅱ):x
1
+2x
2
+x
3
=a-1
有公共解,求a的值及所有公共解.
选项
答案
1 方程组(Ⅰ)的系数矩阵A的行列式为 [*] =(a-1)(a-2) (1)当|A|≠0,即a≠1且a≠2时,方程组(Ⅰ)只有零解,而零解x=(0,0,0)
T
不满足方程(Ⅱ),故当a≠1且a≠2时,(Ⅰ)与(Ⅱ)无公共解; (2)当a=1时,由A的初等行变换 [*] 得方程组(Ⅰ)的通解为x=c(1,0,-1)
T
,其中c为任意常数.显然当a=1时,(Ⅱ)是(Ⅰ)的一个方程,(Ⅰ)的解都满足(Ⅱ).所以,当a=1时,(Ⅰ)与(Ⅱ)的所有公共解是x=c(1,0,-1)
T
,其中c为任意常数; (3)当a=2时,由A的初等行变换 [*] 得(Ⅰ)的通解为x=k(0,1,-1)
T
,要使它是(Ⅱ)的解,将其代入方程(Ⅱ),得k=1,故当a=2时,(Ⅰ)与(Ⅱ)的公共解为x=(0,1,-1)
T
. 2 将(Ⅰ)与(Ⅱ)联立,得线性方程组 [*] 显然,方程组(Ⅲ)的解既满足(Ⅰ),又满足(Ⅱ);反之,(Ⅰ)与(Ⅱ)的公共解必满足(Ⅲ).因此,要求(Ⅰ)与(Ⅱ)公共解,只要求方程组(Ⅲ)的解即可. 对方程组(Ⅲ)的增广矩阵施行初等行变换 [*] 由线性方程组有解判定定理知,方程组(Ⅲ)有解[*](a-1)(a-2)=0[*]a=1或a=2. (1)当a=1时 [*] 由此得方程组(Ⅲ)的通解、即(Ⅰ)与(Ⅱ)的所有公共解为x=c(1.0.-1)
T
,其中c为任意常数; (2)当a=2时 [*] 由此得(Ⅲ)有唯一解x=(0,1,-1)
T
,故当a=2时,(Ⅰ)与(Ⅱ)的公共解为x=(0,1,-1)
T
.
解析
转载请注明原文地址:https://kaotiyun.com/show/V5x4777K
0
考研数学三
相关试题推荐
设随机变量X在区间(0,1)上服从均匀分布,在X=x(0<x<1)的条件下,随机变量Y在区间(0,x)上服从均匀分布.求:概率P(X+Y>1).
设f(x)=∫—1xt|t|dt(x≥一1),求曲线y=f(x)与x轴所围封闭图形的面积。
求函数f(x,y)=xy(a一x—y)的极值.
求方程y’’+2my’+n2y=0满足初始条件y(0)=a,y’(0)=b的特解,其中m>n>0,a,b为常数,并求
(2010年)求函数u=xy+2yz在约束条件x2+y2+z2=10下的最大值和最小值.
[2011年]设随机变量X与Y的概率分布分别为且P(X2=Y2)=1.求X与Y的相关系数ρXY.
(16年)设总体X的概率密度为其中θ∈(0,+∞)为未知参数,X1,X2,X3为来自总体X的简单随机样本,令T=max{X1,X2,X3}.(Ⅰ)求T的概率密度;(Ⅱ)确定a,使得E(aT)=θ.
[2012年]设二维离散型随机变量X,Y的概率分布为求P{X=2Y};
(2009年)(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b一a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则
随机试题
下列有关证券公司公开发行债券募集说明书摘要的表述中,错误的是()。
下列属于商业银行的非利息收入的业务是()。
下列各项中,应计入管理费用的是()。
A公司拟发行附认股权证的公司债券筹资,债券的面值为1000元,期限10年,票面利率为6%,同时,每张债券附送lO张认股权证。假设目前长期公司债的市场利率为9%,则每张认股权证的价值为()元。
以下面谱例中的旋律作为主题,分别写作三段变奏。主题:要求:变奏三:调式改为和声大调。
老当益壮,宁移白首之心?穷且益坚,________。(王勃《滕王阁序》)
建设中国特色社会主义政治的基本目标是()。
Ihadnosoonerreachedhomethanitbegantorain.
Englishhasbeensuccessfullypromoted,andhasbeeneagerlyadoptedinthegloballinguisticmarketplace.Onesymptomoftheim
WhydidPeterJuddjointhearmy?PeterJuddatlast______.
最新回复
(
0
)