首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有四个命题: ①若Ax=0的解均是Bx=0的解,则r(A)≥r(B); ②若r(A)≥r(B),则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则r(A)=r(B); ④若r(
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有四个命题: ①若Ax=0的解均是Bx=0的解,则r(A)≥r(B); ②若r(A)≥r(B),则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则r(A)=r(B); ④若r(
admin
2017-12-29
51
问题
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有四个命题:
①若Ax=0的解均是Bx=0的解,则r(A)≥r(B);
②若r(A)≥r(B),则Ax=0的解均是Bx=0的解;
③若Ax=0与Bx=0同解,则r(A)=r(B);
④若r(A)=r(B),则Ax=0
选项
A、①②
B、①③
C、②④
D、③④
答案
B
解析
由于线性方程组Ax=0和Bx=0之间可以无任何关系,此时其系数矩阵的秩之间的任何关系都不会影响它们各自解的情况,所以②,④显然不正确,利用排除法,可得正确选项为B。
下面证明①,③正确:
对于①,由Ax=0的解均是Bx=0的解可知,方程组Bx=0含于Ax=0之中。从而Ax=0的有效方程的个数(即r(A))必不少于Bx=0的有效方程的个数(即r(B)),故r(A)≥r(B)。
对于③,由于A,B为同型矩阵,若Ax=0与Bx=0同解,则其解空间的维数(即基础解系包含解向量的个数)相同,即n一r(A)=n一r(B),从而r(A)=r(b)。
转载请注明原文地址:https://kaotiyun.com/show/jQX4777K
0
考研数学三
相关试题推荐
如图1.3—1,设曲线方程为y=x2+,梯形OABC的面积为D,曲边梯形OABC的面积为D1,点A的坐标为(a,0),a>0.证明:
设A为3阶矩阵,λ1,λ2,λ3是A的三个不同特征值,对应的特征向量为α1,α2,α3,令β=α1+α2+α3.证明:β,Aβ,A2β线性无关;
设A是72阶实对称阵,λ1=1,λ2,…,λn是A的n个互不相同的特征值,ξ1是A的对应于λ1的一个单位特征向量,则矩阵B=A—λ1ξ1,ξ2T的特征值是________.
设向量α=[α1,α2,…,αn]T≠0,β=[b1,b2,…,bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αTβ,求:A的特征值和特征向量;
设A是三阶实矩阵,λ1,λ2,λ3是A的三个不同的特征值,ξ1,ξ2,ξ3是三个对应的特征向量.证明:当λ2λ3≠0时,向量组ξ1,A(ξ1+ξ2),A2(ξ1+ξ2+ξ3)线性无关.
设z=z(u,υ)具有二阶连续偏导数,且z=z(x一2y,x+3y)满足求x=z(u,υ)的一般表达式.
求下列积分:
设A,B,C为常数,B2一AC>0,A≠0.u(x,y)具有二阶连续偏导数。试证明:必存在非奇异线性变换ξ=λ1x+y,η=λ2x+y(λ1,λ2为常数),将方程
设f(x,y)在点(0,0)处连续,且其中a,b,c为常数.(1)讨论f(x,y)在点(0,0)处是否可微,若可微则求出df(x,y)|(0,0);(2)讨论f(x,y)在点(0,0)处是否取极值,说明理由.
下列函数中在点x=0处可微的是().
随机试题
收养协议应包括的内容有()
有两箱同种零件,第一箱内装50件,其中一等品10件;第二箱内装30件,其中一等品18件;现随机地从两箱中挑出一箱,再从这箱中随机地取出一件零件,则取出的零件是一等品的概率为()
衣胞
郑女士自感恶心、不适来院急诊室就诊,护士观察到患者面色苍白、出冷汗、呼吸急促。患者主诉腹痛、晚上睡眠不好。上述资料中属于客观资料的是
卵泡监测一般从月经周期第几日开始
A.通宣理肺丸B.二母宁嗽丸C.蛇胆川贝液D.固本止咳片E.小青龙合剂治疗咳嗽风寒犯肺证,宜选用的中成药是
路基换填主要是针对()的情况而采用的一种常用的地基处理方式。
以下关于公安机关采取刑事拘留措施,符合《中华人民共和国刑事诉讼法》规定的是:
AstronamersbelievethattheexpandinguniverseistheresultofanenormousandpowerfulexplosioncalledtheBigBang.TheBi
Completetheformbelow.WriteNOMORETHANTHREEWORDSAND/ORANUMBERforeachanswer.ProductIncidentReportExampleAnswer
最新回复
(
0
)