首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有四个命题: ①若Ax=0的解均是Bx=0的解,则r(A)≥r(B); ②若r(A)≥r(B),则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则r(A)=r(B); ④若r(
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有四个命题: ①若Ax=0的解均是Bx=0的解,则r(A)≥r(B); ②若r(A)≥r(B),则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则r(A)=r(B); ④若r(
admin
2017-12-29
88
问题
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有四个命题:
①若Ax=0的解均是Bx=0的解,则r(A)≥r(B);
②若r(A)≥r(B),则Ax=0的解均是Bx=0的解;
③若Ax=0与Bx=0同解,则r(A)=r(B);
④若r(A)=r(B),则Ax=0
选项
A、①②
B、①③
C、②④
D、③④
答案
B
解析
由于线性方程组Ax=0和Bx=0之间可以无任何关系,此时其系数矩阵的秩之间的任何关系都不会影响它们各自解的情况,所以②,④显然不正确,利用排除法,可得正确选项为B。
下面证明①,③正确:
对于①,由Ax=0的解均是Bx=0的解可知,方程组Bx=0含于Ax=0之中。从而Ax=0的有效方程的个数(即r(A))必不少于Bx=0的有效方程的个数(即r(B)),故r(A)≥r(B)。
对于③,由于A,B为同型矩阵,若Ax=0与Bx=0同解,则其解空间的维数(即基础解系包含解向量的个数)相同,即n一r(A)=n一r(B),从而r(A)=r(b)。
转载请注明原文地址:https://kaotiyun.com/show/jQX4777K
0
考研数学三
相关试题推荐
已知,求An.
求
ex展开成(x一3)的幂级数为________.
交换下列累次积分的积分次序.
平面区域D={(x,y)||x|+|y|≤1},计算如下二重积分:常数λ>0.
设二维随机变量(X,Y)在区域上服从均匀分布,则(X,Y)的关于X的边缘概率密度fx(x)在点x=e处的值为________.
已知n阶矩阵A的每行元素之和为a,求A的一个特征值,当k是自然数时,求Ak的每行元素之和.
求下列积分:
将函数f(x)=展开成x的幂级数,并指出其收敛区间.
已知抛物线y=px2+qx(其中P<0,q>0)在第一象限内与直线x+y=5相切,且抛物线与x轴所围成的平面图形的面积为S.(1)问P和q为何值时,S达到最大值?(2)求出此最大值.
随机试题
人眼视近物时主要表现为
完整的内分泌疾病的诊断一般不包括
下列不属于月经后期常见病机的是
基本存款账户的存款人可以通过本账户办理日常转账结算和现金缴存,但不能办理现金支取。()
学过长方形的面积计算公式后,再学习正方形的面积计算公式。这种学习属于()。
I______myclothes,andthephonerang.
温家宝总理在给一位国务院参事的回信中,引用了两句诗:“知屋漏者在宇下,知政失者在草野。”这一古训蕴含的哲理是()。
通常,人们会认为只有剧烈的运动才能够燃烧脂肪,可是研究表明,经常爬楼梯也是一个可以消耗脂肪的运动,同时也是锻炼心血管功能的有效辅助练习。研究称,一个体重超重的人在一年内能够每天坚持爬两层楼梯,那么他有望减掉十二公斤的体重。以下选项如果为真,最不支持上述观点
二次型f(x1,x2,x3)=(x1+x2)2+(x2+x3)2-(x3-x1)2的正惯性指数与负惯性指数依次为()
Amace-wieldingclownlashesatabearcub.Anelephantstandsonitsrearlegsonthepointofastungun,electricarcsrunnin
最新回复
(
0
)