首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有四个命题: ①若Ax=0的解均是Bx=0的解,则r(A)≥r(B); ②若r(A)≥r(B),则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则r(A)=r(B); ④若r(
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有四个命题: ①若Ax=0的解均是Bx=0的解,则r(A)≥r(B); ②若r(A)≥r(B),则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则r(A)=r(B); ④若r(
admin
2017-12-29
54
问题
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有四个命题:
①若Ax=0的解均是Bx=0的解,则r(A)≥r(B);
②若r(A)≥r(B),则Ax=0的解均是Bx=0的解;
③若Ax=0与Bx=0同解,则r(A)=r(B);
④若r(A)=r(B),则Ax=0
选项
A、①②
B、①③
C、②④
D、③④
答案
B
解析
由于线性方程组Ax=0和Bx=0之间可以无任何关系,此时其系数矩阵的秩之间的任何关系都不会影响它们各自解的情况,所以②,④显然不正确,利用排除法,可得正确选项为B。
下面证明①,③正确:
对于①,由Ax=0的解均是Bx=0的解可知,方程组Bx=0含于Ax=0之中。从而Ax=0的有效方程的个数(即r(A))必不少于Bx=0的有效方程的个数(即r(B)),故r(A)≥r(B)。
对于③,由于A,B为同型矩阵,若Ax=0与Bx=0同解,则其解空间的维数(即基础解系包含解向量的个数)相同,即n一r(A)=n一r(B),从而r(A)=r(b)。
转载请注明原文地址:https://kaotiyun.com/show/jQX4777K
0
考研数学三
相关试题推荐
求二阶常系数线性微分方程y"+λy’=2x+1的通解,其中λ为常数.
证明:∫01dx∫01(xy)xydy=∫01xxdx.
设A是三阶实矩阵,λ1,λ2,λ3是A的三个不同的特征值,ξ1,ξ2,ξ3是三个对应的特征向量.证明:当λ2λ3≠0时,向量组ξ1,A(ξ1+ξ2),A2(ξ1+ξ2+ξ3)线性无关.
设y=y(x)是由sinxy=确定的隐函数,求y’(0)和y"(0)的值.
求下列积分:
求下列极限.
设函数f(x)在(a,b)内存在二阶导数,且f"(x)<0.试证:若x1,x2,…xn∈(a,b),且xi<xi+1(i=1,2,…,n一1),则其中常数ki>0(i=1,2,…,n)且
证明:f(x,y)=Ax2+2Bxy+Cy2在约束条件g(x,y)=下有最大值和最小值,且它们是方程k2一(Aa2+Cb2)k+(AC—B2)a2b2=0的根.
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解。(Ⅰ)求A的特征值与特征向量;(Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=A;(Ⅲ)求A及,其中E为3阶单位矩阵。
设X与Y独立且X~N(μ,σ2),Y服从区间[一π,π]上的均匀分布,求Z=X+Y的密度fZ(z)。
随机试题
(Para.1,Passage4)Flyingoveradesertareainanairplane,twoscientistslookeddownwiththeirtrainedeyesattreesandb
有关表皮样囊肿的描述,错误的是
患者,男,15岁。5天来双膝关节、肌肉疼痛酸楚,屈伸不利,疼痛呈游走性,初起有恶风、发热,舌苔薄白,脉浮。其治疗应首选的方剂是
下列总体管线敷设时所遵循的原则中,哪项是错误的?[2006-82]
海湾取样位置的选择,当污水排放量为66000m3/d,对于二级水环境影响评价,每()k2布设一个取样位置。
建立安全生产检查制度的作用在于( )。
行政处罚的形式包括罚款、没收违法所得、责令停产停业、行政拘留等。()
2001年全国人大常委会作出解释:《刑法》第四百一十条规定的“非法批准征用、占用土地”,是指非法批准征用、占用耕地、林地等农用地以及其他土地。对该法律解释,下列说法正确的是
已知η1,η2,η3,η4是齐次方程组AX=0的基础解系,则此方程组的基础解系还可以是
当前工资表中有108条记录,当前记录号为8,用SUM命令计算工资总和时,若缺省[范围]短语,则系统将______。
最新回复
(
0
)