首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶矩阵A,B满足关系式AB=A—B且A有三个不同的特征值. 证明:(Ⅰ)AB=BA: (Ⅱ)存在可逆阵P,使得P-1AP,P-1BP同时为对角阵.
设3阶矩阵A,B满足关系式AB=A—B且A有三个不同的特征值. 证明:(Ⅰ)AB=BA: (Ⅱ)存在可逆阵P,使得P-1AP,P-1BP同时为对角阵.
admin
2020-12-17
85
问题
设3阶矩阵A,B满足关系式AB=A—B且A有三个不同的特征值.
证明:(Ⅰ)AB=BA:
(Ⅱ)存在可逆阵P,使得P
-1
AP,P
-1
BP同时为对角阵.
选项
答案
(Ⅰ)由题设 AB=A—B, ① 知 AB—A+B—E=一E, A(B—E)+(B—E)=一E, (A+E)(E一B)=E. ② 即A+E,E一B互为逆矩阵,且 (E—B)(A+E)=E, ③ 从而得 A—B一BA=O, ④ 由①,④式得证AB=BA. (Ⅱ)A有三个不同的特征值,故有三个线性无关的特征向量,设为ξ
1
,ξ
2
,ξ
3
.则有 A(ξ
1
,ξ
2
,ξ
3
)=(λ
1
ξ
1
,λ
2
ξ
2
,λ
3
ξ
3
)=(ξ
1
,ξ
2
,ξ
3
)[*], 两端左边乘B, BA(ξ
1
,ξ
2
,ξ
3
)=B(ξ
1
,ξ
2
,ξ
3
)[*]. 由(Ⅰ)AB=BA,得 AB(ξ
1
,ξ
2
,ξ
3
)=B(ξ
1
,ξ
2
,ξ
3
)[*]=B(λ
1
ξ
1
,λ
2
ξ
2
,λ
3
ξ
3
), 得A(Bξ
i
)=λ
i
(Bξ
i
),i=1,2,3. 若Bξ
i
≠0,则Bξ
i
是A的属于特征值λ
i
的特征向量,因λ
i
是单根,故对应相同的特征值的特征向量成比例.故Bξ
i
=μ
i
ξ
i
. 若Bξ
i
=0,则ξ
i
是B的属于特征值0的特征向量.无论何种情况,B都有三个线性无关的特征向量ξ
i
(i=1,2,3).故A,B同时存在可逆阵P=(ξ
1
,ξ
2
,ξ
3
),使得P
—1
AP=[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/jRx4777K
0
考研数学三
相关试题推荐
[2004年]设f’(x)在Ea,b]上连续,且f’(a)>0,f’(b)<0,则下列结论中错误的是().
[2004年]设f(x)在区间(一∞,+∞)内有定义,且则().
设随机变量X的密度函数为ψ(x),且ψ(一x)=ψ(x),F(x)为X的分布函数,则对任意实数a,有()
设n阶矩阵A与对角矩阵相似,则().
设f(x)=,则下列结论中错误的是()
设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,向量β2不能由α1,α2,α3线性表示,则必有()
已知随机变量X与Y有相同的不为零的方差,则X与Y相关系数ρ=1的充要条件是
设X1,X2,…,Xn是来自标准正态总体的简单随机样本,和S2为样本均值和样本方差,则
设随机变量X的概率分布为则常数a=
设区域D={(x,y)|x2+y2≤4,x≥0,y≥0},f(x)为D上的正值连续函数,a,b为常数,则
随机试题
9个月男孩,因其尚未出牙就诊,最恰当的处理是
某市政协扎实推进“请你来协商”平台建设,开展“请你来协商”重点活动,通过面对面协商、点对点交流,不少意见建议得到采纳并转化为工作举措。从实质民主角度看,“请你来协商”平台()。
Therearemomentsinlifewhenyou_______【C1】someonesomuchthatyoujustwanttopickthemfromyourdreamsandhugthemfor
下列是右心衰竭致心源性水肿时的体征,除了
有一名颅内压增高病人,持续颅内压增高导致病理生理紊乱,但应除外
关于工业小型汽轮机转子安装技术要点的说法中,正确的有()。
下列不属于系统风险的是()
内容、设计、编校质量均合格,印刷装订质量不合格的成品图书,其总体质量等级为()。
已知数列{log3(an+1)}(a∈N*)为等差数列,a2=2,a4=26,则数列{an}的通项公式为______.
揭示了“教师的期望使学生的学习成绩和行为表现发生积极变化”这一原理的效应称为()。
最新回复
(
0
)