首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,又g(x)在[a,b]上连续,求证:存在ξ∈(a,b)使得f’(ξ)=g(ξ)f(ξ).
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,又g(x)在[a,b]上连续,求证:存在ξ∈(a,b)使得f’(ξ)=g(ξ)f(ξ).
admin
2019-02-20
31
问题
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,又g(x)在[a,b]上连续,求证:存在ξ∈(a,b)使得f’(ξ)=g(ξ)f(ξ).
选项
答案
设[*]是g(x)的某个原函数,并令[*]作辅助函数F(x)=R(x)f(x),对F(x)在[a,b]上用罗尔定理,即知本题结论成立.
解析
注意存在ξ∈(a,b),
其中R(x)是在[a,b]上连续,在(a,b)内可导,而且当x∈(a,b)时满足如下条件的任一函数:
R’(x)=-R(x)g(x),又R(x)≠0.
可取R(x)=e∫
g(x)dx
,若对R(x)f(x)在[a,b]上可用罗尔定理即得证.
转载请注明原文地址:https://kaotiyun.com/show/jUP4777K
0
考研数学三
相关试题推荐
设A,B都是三阶方阵,满足AB=A—B,若λ1,λ2,λ3是A的三个不同特征值,证明:(1)λ1≠一1(i=1,2,3);(2)存在可逆阵C,使CTAC,CTBC同时为对角矩阵.
考虑二元函数的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在.若用“P→Q”表示可由性质P推出性
设=b,其中a,b为常数,则().
设f(x)=,则当x→0时,g(x)是f(x)的().
微分方程y"一y=ex+1的一个特解应具有形式().
证明:方阵A是正交矩阵,即AAT=E的充分必要条件是:(1)A的列向量组组成标准正交向量组,即或(2)A的行向量组组成标准正交向量组,即
设α1,α2,α3,α4都是n维向量.判断下列命题是否成立.①如果α1,α2,α3线性无关,α4不能用α1,α2,α3线性表示,则α1,α2,α3,α4线性无关.②如果α1,α2线性无关,α3,α4都不能用α1,α2线性表示,则α1,α2,α3,α4线
设求一A13一A23+2A33+A43.
求下列函数的n阶导数公式:
设f(x)在[-a,a](a>0)上有四阶连续的导数,存在.(1)写出f(x)的带拉格朗日余项的麦克劳林公式;(2)证明:存在ξ1,ξ2∈[-a,a],使得
随机试题
阅读下文,回答问题。温暖的村庄安庆村庄真是一个固执的地方
()对于《史记》相当于刻舟求剑对于()。
甲企业、乙企业和朱某作为发起人募集设立了丙股份有限公司,丙公司共有200万股股份,甲企业持有丙公司40万股股份.乙企业持有丙公司20万股股份,朱某持有丙公司10万股股份,其余股份以无记名股票的形式发放募集。丙公司章程中规定实行累积投票制。丙公司为奖励公司杰
一般识别声音所需要的最短持续时间为()ms。
平等的市场主体应该享有平等地接近和享用经济要素的权利,()是保证农民平等地享用经济资源,是统筹城乡经济社会发展的关键。
用不超过150字的篇幅,概括出上述资料的主要内容。用不超过350字的篇幅,针对资料所反映的问题,提出解决方案或应对措施,该方案或措施要有可行性。
设不定积分的结果中不含对数函数,求常数α,β,γ,δ应满足的充要条件,并计算此不定积分.
一台交换机具有48个10/100Mbit/s端口和2个1000Mbit/s端口,如果所有端口都工作在全双工状态,那么交换机总带宽应为()。
Marywasgoingtoaweddingsoshebrushed______well.
Humanbehaviorismostlyaproductoflearning,whereasthebehaviorofananimaldependsmainlyon________.
最新回复
(
0
)