首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[-a,a](a>0)上有四阶连续的导数,存在. (1)写出f(x)的带拉格朗日余项的麦克劳林公式; (2)证明:存在ξ1,ξ2∈[-a,a],使得
设f(x)在[-a,a](a>0)上有四阶连续的导数,存在. (1)写出f(x)的带拉格朗日余项的麦克劳林公式; (2)证明:存在ξ1,ξ2∈[-a,a],使得
admin
2018-01-23
65
问题
设f(x)在[-a,a](a>0)上有四阶连续的导数,
存在.
(1)写出f(x)的带拉格朗日余项的麦克劳林公式;
(2)证明:存在ξ
1
,ξ
2
∈[-a,a],使得
选项
答案
(1)由[*]存在,得f(0)=0,f’(0)=0,f’’(0)=0, 则f(x)的带拉格朗日余项的麦克劳林公式为f(x)=[*]x
4
其中ξ介于0 与x之间. (2)上式两边积分得∫
-a
a
f(x)dx=[*]∫
-a
a
f
(4)
(ξ)x
4
dx. 因为f
(4)
(x)在[-a,a]上为连续函数,所以f
(4)
(x)在[-a,a]上取到最大值M和最小值 m,于是有mx
4
≤f
(4)
≤Mx
4
, 两边在[-a,a]上积分得[*]a
5
≤∫
-a
a
f
(4)
(ξ)x
4
dx≤[*]a
5
, 从而[*]∫
-a
a
f
(4)
(ξ)x
4
dx≤[*]≤∫
-a
a
f(x)dx≤[*], 于是m≤[*]∫
-a
a
f(x)dx≤M, 根据介值定理,存在ξ
1
∈[-a,a],使得 f
(4)
(ξ
1
)=[*]∫
-a
a
f(x)dx,或a
5
f
(4)
(ξ
1
)=60∫
-a
a
f(x)dx. 再由积分中值定理,存在ξ
2
∈[-a,a],使得 a
5
f
(4)
(ξ
1
)=60∫
-a
a
f(x)dx=120af(ξ
2
),即a
4
f
(4)
(ξ
1
)=120f(ξ
2
).
解析
转载请注明原文地址:https://kaotiyun.com/show/uNX4777K
0
考研数学三
相关试题推荐
设α1,α2,α3,α4为四维列向量组,且α1,α2,α3线性无关,α4=α1+α2+2α3.已知方程组[α1一α2,α2+α3,一α1+aα2+α3]X=α4有无穷多解.(1)求a的值;(2)用基础解系表示该方程组的通解.
已知随机变量X的密度函数f(x)=(λ>0,A为常数),则概率P(λ<X<λ+a)(a>0)的值().
A是m×n矩阵,线性方程组AX=b有唯一解的充分必要条件是().
已知函数 在(一∞,+∞)内连续可导,则().
设向量组I:α1,α2,…,αs,Ⅱ:β1,β2,…,βr,且向量组I可由向量组Ⅱ线性表示,下列结论正确的是()
设f(x),g(x)在(一∞,+∞)上有定义,且x=x1是f(x)的唯一间断点,x=x2是g(x)的唯一间断点,则()
设函数问函数f(x)在x=1处是否连续?若不连续,修改函数在x=1处的定义使之连续.
设F(x)=∫xx+2πesintsintdt,则F(x)().
设=∫-∞atetdt,则a=______.
设=∫-∞atetdt,则a=_______.
随机试题
进程的“同步”和“互斥”反映了进程间直接制约和______的关系。
Neverinmylife_____suchathing.
炉甘石用黄连汤煅淬或拌制后,可
男,78岁,主诉四天未大便,头痛、腹痛、腹胀、乏力,触诊腹部紧张,可触及包块,肛诊可触及粪块,诊断为便秘,医嘱为大量不保留灌肠。大量不保留灌肠的液面与床面的距离为
乡、民族乡、镇的人民代表大会代表无权依照法律规定的程序对下列哪类人员提出罢免案?()
下列有关普通合伙企业合伙事务执行的表述中,符合《合伙企业法》规定的是()。
根据反垄断法律制度的规定,下列垄断协议中,由国家工商总局负责执法的有()。
创新:僵化
Whathandshakemean?Inone’sowncountry,1.Insomecultures,people—shakehands—bowstoeachother—【1】
Thehorseandcarriageisathingofthepast,butloveandmarriagearestillwithusandstillcloselyinterrelated.MostAmer
最新回复
(
0
)