首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
n阶实对称矩阵A正定的充分必要条件是( )
n阶实对称矩阵A正定的充分必要条件是( )
admin
2019-07-12
56
问题
n阶实对称矩阵A正定的充分必要条件是( )
选项
A、二次型x
T
Ax的负惯性指数为零。
B、存在可逆矩阵P使P
-1
AP=E。
C、存在n阶矩阵C使A=C
-1
C。
D、A的伴随矩阵A
*
与E合同。
答案
D
解析
A选项是必要不充分条件。这是因为r(A)=p+g≤n,当g=0时,有r(A)=p≤n。此时有可能p
TAx不一定是正定二次型。因此矩阵A不一定是正定矩阵。例如f(c)=x
1
2
+5x
3
2
。
B选项是充分不必要条件。这是因为P
-1
AP=E表示A与E相似,即A的特征值全是1,此时A是正定的。但只要A的特征值全大于零就可保证A正定,因此特征值全是1是不必要的。
C选项中的矩阵C没有可逆的条件,因此对于A=C
T
C不能说A与E合同,也就没有A是正定矩阵的结论。例如
C=
,A=C
T
C=
,
显然矩阵不正定。
关于选项D,由于
A正定
A
-1
正定
A
*
正定
A
*
与E合同,
所以D是充分必要条件,故选D。
转载请注明原文地址:https://kaotiyun.com/show/jVJ4777K
0
考研数学三
相关试题推荐
(2013年)设随机变量X和Y相互独立,且X和Y的概率分布分别为则P{X+Y=2}=()
设A为n阶实对称矩阵,满足A2=E,并且r(A+E)=k<n.①求二次型xTAx的规范形.②证明B=E+A+A2+A3+A4是正定矩阵,并求|B|.
设A是5×4矩阵,r(A)=4,则下列命题中错误的为
下列矩阵中不相似于对角矩阵的是
设一次试验成功的概率为p,进行100次独立重复试验,当p=______时,成功次数的标准差最大,其最大值为______.
设(n=1,2,…;an>0,bn>0),证明:若级数收敛;
(2002年)求极限
设区域D={(x,y)|x2+y2≤4,x≥0,y≥0},f(x)为D上正值连续函数,a,b为常数,则等于()
下列说法正确的是().
设{an)与{bn}为两个数列,下列说法正确的是().
随机试题
与网络计划相比较,横道图进度计划法的特点有( )。
A.免疫固定电泳B.透射比浊法C.ELISAD.速率散射比浊法E.单向免疫扩散技术鉴定M蛋白类型的方法是
某医院在一次优生优育的图片展览中。展出了某一性病患者的照片,并在说明中用推断性的语言表述该患者系性生活不检点所致。虽然患者眼部被遮,也未署名,但有些观众仍能辨认出该患者是谁。患者得知这一情况后精神压力过大,悬梁自尽。为此患者亲属向法院提诉讼,状告医院。现问
香港华为公司总部设在香港地区,在内地A地设有办事处,并在B地拥有一笔物业。因该公司与内地方圆公司有合同纠纷,被方圆公司诉讼到法院。该合同签订地为C地,并约定于D地履行,但合同现在尚未履行,则有权管辖本案的法院有:()。
影响消费者行为最直接的、决定性的因素是()。
材料:学生黎明和晓红有以下一段对话:黎明:“你说奇怪不奇怪,我感觉自己得了健忘症,有时候刚学完的东西马上就忘了。”晓红:“我比你好点,起码我早上刚起来和晚上睡觉之前脑子记东西还是很快的。”黎明:“我感觉记忆是个怪东西
()连接太平洋和大西洋,被誉为世界七大工程奇迹之一的“世界桥梁”。
投射法,也称投射测试,在心理学上的解释,是指个人把自己的思想、态度、愿望、情绪或特征等,不自觉地反应于外界的事物或他人的一种心理作用。具体说来,就是让被试者通过一定的媒介,建立起自己的想象世界,在无拘束的情景中,显露出其个性特征的一种个性测试方法。根据上述
有专家指出,传统社会里,人际交往主要在血缘与地缘的基础上展开,其特征为熟人信任,人们彼此信任的保障机制主要是熟人关系加上人品和声望等。随着传统社会向现代社会转型,工业化进程和城镇化脚步加快,人际交往范围进一步扩展,人们更多的是面对陌生人的世界,传统社会信任
商户甲使用数字签名技术向商户乙传输合同,甲的私钥是AKD,公钥是AKE,乙的私钥是BKD,公钥是BKE,合同原文是M,摘要是H,数字签名加密算法为D。则商户甲向商户乙传输的数字签名文件是(35)。商户乙应使用(36)验证数字签名的正确性。(35)
最新回复
(
0
)