首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实对称矩阵,满足A2=E,并且r(A+E)=k<n. ①求二次型xTAx的规范形. ②证明B=E+A+A2+A3+A4是正定矩阵,并求|B|.
设A为n阶实对称矩阵,满足A2=E,并且r(A+E)=k<n. ①求二次型xTAx的规范形. ②证明B=E+A+A2+A3+A4是正定矩阵,并求|B|.
admin
2018-05-23
55
问题
设A为n阶实对称矩阵,满足A
2
=E,并且r(A+E)=k<n.
①求二次型x
T
Ax的规范形.
②证明B=E+A+A
2
+A
3
+A
4
是正定矩阵,并求|B|.
选项
答案
①由于A
2
=E,A的特征值λ应满足λ
2
=1,即只能是1和一1.于是A+E的特征值只能是2和0.A+E也为实对称矩阵,它相似于对角矩阵∧,∧的秩等于r(A+E)=k.于是A+E的特征值是2(k重)和0(n一k重),从而A的特征值是1(k重)和一l(n一k重).A的正,负关系惯性指数分别为k和n一k,x
T
Ax的规范形为 y
1
2
+y
2
2
+…+y
k
2
一y
k+1
2
一…一y
n
2
. ②B是实对称矩阵.由A
2
=E,有B=3E+2A,B的特征值为5(k重)和1(n一k重)都是正数.因此B是正定矩阵. ∴ |B|=5
k
.1
n-k
=5
k
.
解析
转载请注明原文地址:https://kaotiyun.com/show/hOX4777K
0
考研数学三
相关试题推荐
设α1=(1,3,5,一1)T,α2=(2,7,a,4)T,α3=(5,17,一1,7)T.①若α1,α2,α3线性相关,求α.②当a=3时,求与α1,α2,α3都正交的非零向量α4.③设a=3,α4是与α1,α2,α3都正交的非零向量,证明α1,α
进行独立重复试验直到试验取得首次成功为止,设每次试验的成功率都是p(0<P<1).现进行10批试验,其各批试验次数分别为5,4,8,3,4,7,3,1,2,3.求:(Ⅰ)试验成功率P的矩估计值;(Ⅱ)试验失败率q的最大似然估计值.
设二维随机变量(X,Y)服从正态分布N(μ,μ;σ2,σ2;0),则Emin(X,Y)=________.
设=5,求a,b的值.
λ为何值时,方程组无解,有唯一解或有无穷多解?并在有无穷多解时写出方程组的通解.
n维向量组α1,α2,…,α3(3≤s≤n)线性无关的充要条件是()
设n阶(n≥3)矩阵A的主对角元均为1,其余元素均为a,且方程组AX=0只有一个非零解组成基础解系,则a=_________.
设且A~B.求a;
设f(x)连续,φ(x)=∫01f(xt)dt,且=A.求φ’(x),并讨论φ’(x)在x=0处的连续性.
设且A~B.(1)求a;(2)求可逆矩阵P,使得P-1AP=B.
随机试题
用()铣削多面体时,对刀不准会产生不对称和不同轴等现象。
简述ERP(企业资源计划)的核心思想及其主要体现。
下列有关叶酸的说法,错误的是
类风湿关节炎的诊断标准中有对称性关节肿
岳珊搬到某小区已经快有一个月的时间了,由于平时工作比较忙,再加上她也不太喜欢与别人交往,所以对于小区内的情况还不是很了解,生活起来也不太方便。针对此问题,社会工作者应采取的策略是()。
企业员工培训投资属于(),它的投资收益远远高于实物投资收益。(2005年11月三级真题)
阅读下面这首诗,回答问题。无题(唐)李商隐相见时难别亦难,东风无力百花残。春蚕到死丝方尽,蜡炬成灰泪始干。晓镜但愁云鬓改,夜吟应觉月光寒。蓬山此去无多路,青鸟殷勤为探看。诗人如何逐步抒发自己的思想感情?
讲述是教师主要的教学手段,一般可以分为哪三个阶段进行?()
职权是由组织领导者的地位决定的一种具有强制性的法定权力。它有明确的范围,权力因职位不同而变化。根据上述定义,下列属于职权的是()。
Theconstructionoftherailwayissaidtohavebeenterminated.
最新回复
(
0
)