首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知齐次方程组(Ⅰ) 解都满足方程x1+x2+x3=0,求a和方程组的通解.
已知齐次方程组(Ⅰ) 解都满足方程x1+x2+x3=0,求a和方程组的通解.
admin
2018-06-27
35
问题
已知齐次方程组(Ⅰ)
解都满足方程x
1
+x
2
+x
3
=0,求a和方程组的通解.
选项
答案
求出(Ⅰ)的解,代入x
1
+x
2
+x
3
=0,决定a. 用矩阵消元法,设系数矩阵为A, [*] 当a=0时,(Ⅰ)和方程x
1
+x
2
+x
4
=0同解,以x
2
,x
3
,x
4
为自由未知量求出一个基础解系 η
1
=(-1,1,0,0)
T
,η
2
=(0,0,1,0)
T
,η
3
=(-1,0,0,1)
T
. 其中η
2
,η
3
都不是x
1
+x
2
+x
3
=0,的解,因此a=0不合要求. 当a≠0时,继续对B进行初等行变换 [*] 以x
4
为自由未知量,得基础解系η=(a-1,-a,[*],1)
T
.代入x
1
+x
2
+x
3
=0, (a-1)+(-a)+[*]=0, 求得a=1/2.即当a=1/2时,η适合x
1
+x
2
+x
3
=0,从而(Ⅰ)的解都满足x
1
+x
2
+x
3
=0.当a≠1/2时,η不满足x
1
+x
2
+x
3
=0. 得a=1/2为所求.此时,方程组的通解为c(-1/2,-1/2,1,1)
T
,c可取任何常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/jak4777K
0
考研数学二
相关试题推荐
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量,满足Aα1=一α1一3α2—3α3,Aα2=4α1+4α2+α3,Aα3=一2α1+3α3.求矩阵A*一6E的秩.
计算二重积分.其中D={(x,y)|x2+y2≤a2,常数a>0}.
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.求α1,α2,α3,α4应满足的条件;
已知α1,α2,α3,α4是3维非零向量,则下列命题中错误的是
设有一容器由平面z=0,z=1及介于它们之间的曲面S所围成.过z轴上点(0,0,z)(0≤z≤1)作垂直于z轴的平面与该立体相截得水平截面D(z),它是半径的圆面.若以每秒v0体积单位的均匀速度往该容器注水,并假设开始时容器是空的.求灌满容器所需时间.
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是η1=(1,3,0,2)T,η2=(1,2,一1,3)T,又知齐次方程组Bx=0的基础解系是β1=(1,1,2,1)T,β2=(0,一3,1,α)T,)如果齐次线性方程组Ax=0与BBx=0有非零公共解
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3Aα一2A2α.证明:BTB是正定矩阵.
设3维向量组α1,α2线性无关,β1,β2线性无关.证明:存在非零3维向量ξ1,ξ2既可由α1,α2线性表出,也可由β1,β2线性表出;
一厂商经营两个工厂,生产同一种产品在同一市场销售,两个工厂的成本函数分别为C1=3Q12+2Q1+6,C2=2Q22+2Q2+4而价格函数为P=74-6Q,Q=Q1+Q2厂商追求最大利润.试确定每个工厂的产出.
设D={(x,y)|x2+y2≤,x≥0,y≥0,[1+x2+y2]表示不超过1+x2+y2的最大整数。计算二重积分xy[1+x2+y2]dxdy。[img][/img]
随机试题
Wheredidthewomansaysheputherglasses?
A.蛋白质消化产物B.盐酸C.脂肪D.胆盐引起促胰液素释放作用最强的是
丈夫经常抽烟,妻子认为该行为对孩子健康不利,就对丈夫说“多喝茶有利健康”,这种沟通从形式上属于
半砖隔墙的顶部与楼板相接处应采用()方式砌筑。
()是一种集开挖、支护、衬砌等多种作业于一体的大型隧道施工机械,是根据隧道的断面尺寸设计生产的专用机械。
实行历年制的预算年度的国家有()。
2015年12月31日,甲公司某项无形资产的原价为120万元,已摊销42万元,未计提减值准备。当日,甲公司对该无形资产进行减值测试,预计公允价值减去处置费用后的净额为55万元,未来现金流量的现值为60万元。2015年12月31日,甲公司应为该无形资产计提的
Therearetwomajorsystemsofcriminalprocedureinthemodernworld—theadversarialandtheinquisitorial.Bothsystemswereh
培育和践行社会主义核心价值观具有重大意义,因为它是
Cursive(手写体,草书),theartofpenmanshipcastasideinrecentyearsasschoolsincreasinglyfocusonkeyboarding,maybegetting
最新回复
(
0
)