首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. (1)求矩阵A的特征值; (2)求可逆矩阵P使得P-1AP=∧.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. (1)求矩阵A的特征值; (2)求可逆矩阵P使得P-1AP=∧.
admin
2016-05-09
86
问题
设A为3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量,且满足Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,Aα
3
=2α
2
+3α
3
.
(1)求矩阵A的特征值;
(2)求可逆矩阵P使得P
-1
AP=∧.
选项
答案
(1)由已知可得 A(α
1
,α
2
,α
3
)=(α
1
+α
2
+α
3
,2α
2
+α
3
,2α
2
+3α
3
)=(α
1
,α
2
,α
3
)[*] 记P
1
=(α
1
,α
2
,α
3
),B=[*],则有AP
1
=P
1
B. 由于α
1
,α
2
,α
3
线性无关,即矩阵P
1
可逆,所以P
1
-1
AP
1
=B,因此矩阵A与B相似,则 |λE-B|=[*]=(λ-1)
2
(λ-4), 矩阵B的特征值是1,1,4,由相似矩阵的性质,故矩阵A的特征值为1,1,4. (2)由(E-B)χ=0,得矩阵B对应于特征值λ=1的特征向量β
1
=(-1,1,0)
T
,β
2
=(-2,0,1)
T
;由(4E-B)χ=0,得对应于特征值λ=4的特征向量β
3
=(0,1,1)
T
. 令P
2
=(β
1
,β
2
,β
3
)=[*],得P
2
-1
BP
2
=[*]. 则P
2
-1
P
1
-1
AP
1
P
2
=[*] 即当P=P
1
P
2
=(α
1
,α
2
,α
3
)[*]=(-α
1
+α
2
,-2α
1
+α
3
,α
2
+α
3
)时,有 P
-1
AP=∧=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/jgw4777K
0
考研数学一
相关试题推荐
设A、B均是3阶矩阵,其中|A|=2,|B|=-3,A*、B*分别是矩阵A、B的伴随矩阵,则
A、 B、 C、 D、 A
[*]
[*]
设f(x)在[0,1]上连续,在(0,1)内二阶可导,且f(0)=f(1)=∫01f(x)dx证明:方程f(x)=∫01f(x)dx在(0,1)内至少有一个实根;
微分方程ey=x的通解为________
已知二次型f(x1,x2,x3)=2x12+2x22+ax32+2x1x2经可逆线性变换x=Py化为g(y1,y2,y3)=y12+y22+2y2y3,则()
计算I=∫Leydx-(cosy-xey)dy,其中L是由点A(-1,1)沿曲线y=x2到点O(0,0),再沿直线到点B(2,0),再沿圆弧y=到点C(0,2)的路径.
已知平面π:x-2y+z-3=0,直线L:,则π与L的夹角是________.
随机试题
杠杆卡规与极限卡规相似,其本身的制造公差需占用被检测工件制造公差的一部分。()
应诊断为:治疗首选方剂是:
甲没有固定职业,以偶尔打零工为生,其收入一般为1小时1元。一日甲在村头闲逛,突然看到同村的乙晕倒在地。因附近没有车站,甲就背着乙沿着小路走到镇医院,耗费两个小时左右,路上由于甲着急匆忙,乙的意大利皮鞋丢了一只。按甲当地居民最低生活标准计算,工作日每小时费用
杆件受力如图所示,则产生轴向变形的段为( )。
正态总体标准差σ的1一α置信区间为()(μ未知)。
模因指在语言、观念、信仰、行为方式等的传递过程中,与基因在生物进化过程中所起作用类似的那个东西,即通过非遗传方式一代一代传承下来的文化单元。根据上述定义,下列不属于模因的是:
He______anothercareerbut,atthetime,hedidn’thaveenoughmoneytoattendgraduateschool.
截至到2000年8月底,香港地区在北京设立外商投资企业共5925家,投资148.17亿美元,分别占全市外商投资企业的38.2%和48.5%位居在京投资的国家和地区之首。这些投资涉及房地产业、加工制造业、邮电通讯业和社会服务业的各个领域。其中商业、
PASSAGEFOURWhatisthispassagemainlyabout?
A、Hisdesiretostarthisownbusiness.B、Thecrisisinhisfamilylife.C、Hisdreamoflivinginthecountryside.D、Thedecline
最新回复
(
0
)