首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. (1)求矩阵A的特征值; (2)求可逆矩阵P使得P-1AP=∧.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. (1)求矩阵A的特征值; (2)求可逆矩阵P使得P-1AP=∧.
admin
2016-05-09
66
问题
设A为3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量,且满足Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,Aα
3
=2α
2
+3α
3
.
(1)求矩阵A的特征值;
(2)求可逆矩阵P使得P
-1
AP=∧.
选项
答案
(1)由已知可得 A(α
1
,α
2
,α
3
)=(α
1
+α
2
+α
3
,2α
2
+α
3
,2α
2
+3α
3
)=(α
1
,α
2
,α
3
)[*] 记P
1
=(α
1
,α
2
,α
3
),B=[*],则有AP
1
=P
1
B. 由于α
1
,α
2
,α
3
线性无关,即矩阵P
1
可逆,所以P
1
-1
AP
1
=B,因此矩阵A与B相似,则 |λE-B|=[*]=(λ-1)
2
(λ-4), 矩阵B的特征值是1,1,4,由相似矩阵的性质,故矩阵A的特征值为1,1,4. (2)由(E-B)χ=0,得矩阵B对应于特征值λ=1的特征向量β
1
=(-1,1,0)
T
,β
2
=(-2,0,1)
T
;由(4E-B)χ=0,得对应于特征值λ=4的特征向量β
3
=(0,1,1)
T
. 令P
2
=(β
1
,β
2
,β
3
)=[*],得P
2
-1
BP
2
=[*]. 则P
2
-1
P
1
-1
AP
1
P
2
=[*] 即当P=P
1
P
2
=(α
1
,α
2
,α
3
)[*]=(-α
1
+α
2
,-2α
1
+α
3
,α
2
+α
3
)时,有 P
-1
AP=∧=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/jgw4777K
0
考研数学一
相关试题推荐
设f(x)连续且F(x)=为().
A、 B、 C、 D、 C
=_________.
设A=,为A中aij(i,j=1,2,3)的代数余子式,二次型的矩阵为B求B
设A=,其中a<0,方程组Ax=0有非零解,A*是A的伴随矩阵,则方程组A*x=0的基础解系为()
设向量组试问:当a,b,c满足什么条件时(1)β可由a1,a2,a3线性表出,且表示法唯一;(2)β可由a1,a2,a3线性表出,但表示法不唯一,并求出一般表达式.(3)β不能由a1,a2,a3线性表出;
已知线性方程组问k1和k2各取何值时,方程组无解?有唯一解?有无穷多组解?在方程组有无穷多组解时,试求出一般解.
过点P(1,1,1)且与直线L1:和直线L2:都平行的平面的方程为().
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.证明B可逆;
n阶方阵A具有n个不同的特征值是A与对角阵相似的().
随机试题
云南省现有世界地质公园1个,即石林世界地质公园。()
某服装公司历史悠久,是一家北京老字号企业。在过去相当长的时期,销售业绩非常好,形成了广大的客户群。但由于服装市场竞争越来越大,目前的销售业绩有明显下滑的趋势。为了扭转这种被动局面,公司决定在传统服装的基础上加入时尚元素,同时切实搞好网络营销工作。为此,营销
已知两曲线y=f(x)与y=∫0arctanxe-t2dt在点(0,0)处的切线相同,写出此切线方程,并求极限.
下述除哪项外均为淋巴瘤发生的可能因素
不是《中华人民共和国产品质量法》的适用范围。
力量训练后,适当补充蛋白质能加速肌肉的增长。()
共同过错,也叫共同侵权行为、共同致人损害行为。指两个或两个以上的行为人,基于共同的故意或过失致他人损害。共同过错的特征在于:1)行为人必须是两个或两个以上;2)数个行为人之间主观上具有共同过错;3)行为的共同性;4)数个行为人的行为与损害结果之间具有因果关
可以解释“一千个读者有一千个哈姆雷特”现象的理论是
Mostadultsoncestudiedatschool,hadclassesanddidtheirhomeworkeveryday.Thesame(41)isgoingonatschoolnow.But
Sincethebeginningof2013,theseregulations______inmostworkplacesacrossthecountry.
最新回复
(
0
)