首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(94年)设有线性方程组 (1)证明:若a1,a2,a3,a4两两不相等,则此线性方程组无解; (2)设a1=a3=k,a2=a4=-k(k≠0),且已知β1=(-1,1,1)T,β2=(1,1,-1)T是该方程组的两个解,写出此方程组的通
(94年)设有线性方程组 (1)证明:若a1,a2,a3,a4两两不相等,则此线性方程组无解; (2)设a1=a3=k,a2=a4=-k(k≠0),且已知β1=(-1,1,1)T,β2=(1,1,-1)T是该方程组的两个解,写出此方程组的通
admin
2017-05-26
70
问题
(94年)设有线性方程组
(1)证明:若a
1
,a
2
,a
3
,a
4
两两不相等,则此线性方程组无解;
(2)设a
1
=a
3
=k,a
2
=a
4
=-k(k≠0),且已知β
1
=(-1,1,1)
T
,β
2
=(1,1,-1)
T
是该方程组的两个解,写出此方程组的通解.
选项
答案
(1)增广矩阵[*]为一方阵,其行列式显然为-4阶范德蒙行列式的转置: [*]=(a
2
-a
1
)(a
3
-a
1
)(a
4
-a
1
)(a
3
-a
2
)(a
4
-a
2
)(a
4
-a
3
) 由a
1
,a
2
,a
3
,a
4
两两不相等,知[*]≠0,从而知矩阵[*]的秩为4.但系数矩阵A为4×3矩阵,有r(A)≤3(或由A左上角的3阶子式不等于零知r(A)=3),故r(A)≠r([*]),因此方程组无解. (2)当a
1
=a
3
=k,a
2
=a
4
=-k(k≠0)时,方程组为 [*] 因为[*]=-2k≠0,故r(A)=r([*])=2,从而原方程组相容且它的导出方程组的基础解系应含有 3-2=1个解向量. 因为β
1
,β
2
是原非齐次方程组的两个解,故 ξ=β
1
-β
2
=[*] 是对应齐次方程组的解,且ξ≠0,故ξ是导出方程组的基础解系. 于是原非齐次方程组的通解为 X=β
1
+cξ=[*],(c为任意常数)
解析
转载请注明原文地址:https://kaotiyun.com/show/jtH4777K
0
考研数学三
相关试题推荐
设X2,X3,…,Xn(n≥2)为来自总体N(0,1)的简单随机样本,X为样本均值,S2为样本方差,则().
设X2,X2,…,Xn是取自总体,N(μ,σ2)的样本,若是σ2的无偏估计量,则C=().
设α为常数,则级数().
已知线性方程组(Ⅰ)a,b为何值时,方程组有解?(Ⅱ)方程组有解时,求出方程组的导出组的一个基础解系:(Ⅲ)方程组有解时,求出方程组的全部解.
设A,B为n阶矩阵,且A与B相似,E为n阶单位矩阵,则().
设3阶对称矩阵A的特征向量值λ1=1,λ2=2,λ3=-2,又a1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.(Ⅰ)验证a1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩阵B.
二次型f(x1,x2,x3)=(x1+x2)2+(x2-x3)2+(x3+x1)2的秩为_________.
已知三元二次型xTAx的平方项系数均为0,设α=(1,2,一1)T且满足Aα=2α.(I)求该二次型表达式;(Ⅱ)求正交变换x=Qy化二次型为标准形,并写出所用坐标变换.
若[x]表示不超过x的最大整数,则积分∫04[x]dx的值为()
设当x→0时,f(x)=ln(1+x2)一ln(1+sin2x)是x的n阶无穷小,则正整数n等于()
随机试题
长期哺羊乳的小儿易致()
公证机构依法证明具有法律意义的事实时()
健康成年人在强体力劳动时,心输出量约可达到
低血钙的临床表现不包括
肺心病中肺动脉高压形成的最重要的因素是
深昏迷病人出现鼾声呼吸,属于
按照证券投资组合理论,以等量资金投资于A、B两证券,则错误的说法是( )。
pitchinagendarecycledA.agreaterdemandforthe【T1】______materialsB.seemstobethe【T2】______C.feelsmovedto【T3
在关系数据库中,用来表示实体间联系的是
以1200bps速率来传送15000字节的文件所需时间约为()
最新回复
(
0
)