首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶方阵,且A的各行元素之和为0,A*为A的伴随矩阵,A*≠O,则A*x=0基础解系的解向量的个数为___________________.
设A为n阶方阵,且A的各行元素之和为0,A*为A的伴随矩阵,A*≠O,则A*x=0基础解系的解向量的个数为___________________.
admin
2021-02-25
88
问题
设A为n阶方阵,且A的各行元素之和为0,A
*
为A的伴随矩阵,A
*
≠O,则A
*
x=0基础解系的解向量的个数为___________________.
选项
答案
n-1
解析
本题考查齐次线性方程组的基础解系的概念和矩阵A与其伴随矩阵A
*
的秩的关系.
由A的各行元素之和为0知(1,1,…,1)
T
是方程组Ax=0的解.所以r(A)<n.又由A
*
≠O知,r(A)≥n-1,故r(A)=n-1,从而r(A
*
)=1,因此A
*
x=0的基础解系的解向量的个数为n-1.
转载请注明原文地址:https://kaotiyun.com/show/WY84777K
0
考研数学二
相关试题推荐
设矩阵且|A|=一1,A的伴随矩阵A*有特征值λ0,属于λ0的特征向量为α=[一1,一1,1]T,求a,b,c及λ0的值.
A是三阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
求常数m,n,使得
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示。将β1,β2,β3由α1,α2,α3线性表示。
设A是n阶矩阵,证明:A=O的充要条件是AAT=O.
A是2阶矩阵,2维列向量α1,α2线性无关,Aα1=α1+α2,Aα2=4α1+α2.求A的特征值和|A|.
设a1,a2,a3是四元非齐次方程组Ax=b的三个解向量,且秩r(A)=3,a1=(1,2,3,4)T,a2+a3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=().
已知f(x)在x=0的某个邻域内连续,且f(0)=0,则在点x=0处f(x)()
设f(x)=3x3+x2|x|,则使f(n)(0)存在的最高阶数n为()
随机试题
A、脐疝B、腹股沟斜疝C、股疝D、腹股沟直疝E、切口疝患者男性,46岁,发现右腹股沟肿块2年,术中发现腹壁下动脉在疝囊颈外侧,应考虑为
患者女,44岁,左侧鼻塞,多清涕2年余,不伴鼻痒及打喷嚏,鼻腔检查见鼻中隔明显左偏,左中鼻道少许分泌物。鼻窦CT示:鼻中隔左偏,左侧上颌窦黏膜稍增厚,最适当的治疗是
下列肋骨中可称为假肋的是
孕妇,36岁。妊娠10周,休息时仍感胸闷、气急。查体:脉搏120次/分,呼吸22次/分,心界向左侧扩大,心尖区有Ⅱ级收缩期杂音,肺底有湿啰音,应采取的处理措施是
对工程项目进行全面管理的中心的是()
在民事诉讼程序中,下列情形可以缺席判决的有()。
在销售与收款循环的审计中,丙注册会计师确定的审计目标是“所有销售交易均已登记入账”,针对这一审计目标,下列说法中错误的是()。在生产与存货循环的审计中,丙注册会计师实施监盘程序,无法实现的审计目标是()。
一般资料:求助者,女性,35岁,已婚,工厂普通工人。案例介绍:有一次求助者上班时眼看就要迟到,就急匆匆地往车间里跑,不小心与公司男领导撞了个满怀,同事们顿时都笑起来,还有人吹起口哨,大家事后还总拿他们开玩笑。以后求助者每次去车间都会紧张,觉得同事
水仙(清)李渔水仙一花,予之命也。予有四命,各司一时:春以水仙兰花为命;夏以莲为命;秋以秋海棠为命;冬以腊梅为命。无此四花,是无命也。一季夺予一花,是夺予一季之命也。水仙以秣陵①为最,
[*]
最新回复
(
0
)