首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(—1,2,—1)T,α2=(0,—1,1)T是线性方程组Ax=0的两个解。 求正交矩阵Q和对角矩阵Λ ,使得QTAQ=Λ 。
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(—1,2,—1)T,α2=(0,—1,1)T是线性方程组Ax=0的两个解。 求正交矩阵Q和对角矩阵Λ ,使得QTAQ=Λ 。
admin
2018-12-29
49
问题
设三阶实对称矩阵A的各行元素之和均为3,向量α
1
=(—1,2,—1)
T
,α
2
=(0,—1,1)
T
是线性方程组Ax=0的两个解。
求正交矩阵Q和对角矩阵Λ ,使得Q
T
AQ=Λ 。
选项
答案
因为A是实对称矩阵,所以α与α
1
,α
2
正交,只需将α
1
与α
2
正交化。 由施密特正交化法,取 β
1
=α
1
,β
2
=α
2
—[*]。 再将α,β
1
,β
2
单位化,得 [*] 令Q=(η
1
,η
2
,η
3
),则Q
—1
=Q
T
,且Q
T
AQ=[*]。
解析
转载请注明原文地址:https://kaotiyun.com/show/jxM4777K
0
考研数学一
相关试题推荐
设向量a={1,2,3),b={1,1,0),若非负实数k使得向量a+kb与a-kb垂直,则实数k的值为______.
设函数y=y(x)由方程组
设随机变量X1,X2,X3相互独立且都服从参数为P的0-1分布,已知矩阵为正定矩阵的概率为.试求:随机变量的分布律.
每次从1,2,3,4,5中任取一个数,且取后放回,用bi表示第i次取出的数(i=1,2,3).三维列向量b=(b1,b2,b3)T,三阶方阵求线性方程组Ax=b有解的概率.
设随机变量X与Y分别表示将一枚骰子接连抛两次后出现的点数.试求齐次方程组:的解空间的维数(即基础解系所含向量的个数)的数学期望和方差.
设是矩阵A-1属于特征值λ0的特征向量,若|A|=-2,求a,b,c及λ0的值.
设A是3×3矩阵,α1,α2,α3是三维列向量,且线性无关,已知Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.证明:Aα1,Aα2,Aα3线性无关.
设齐次线性方程组其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.
设A为三阶实对称矩阵,且存在可逆矩阵求正交变换x=Qy,化二次型f(x1,x2,x3)=xTA*x为标准形,其中A*为A的伴随矩阵;
设a0,a1,…,an-1是n个实数,方阵若A有n个互异的特征值λ1,λ2,…,λn,求可逆阵P,使P-1AP=A.
随机试题
下列核实资料中正确的是
氨甲蝶呤抗肿瘤的机制是
患者男,32岁,有一铸造全冠,探查冠边缘悬突,邻接不良,周围龈缘红肿。如何进行治疗
保险的概念,可以从两个方面来定义,一方面,保险是一种经济补偿制度,主要是对意外灾害事故造成的损失进行补偿;另一方面,保险是一种合同而产生的法律关系。()
[2009年第84题]如图7.2.23(a)所示电路的激励电压如图(b)所示,那么,从t=0时刻开始,电路出现暂态过程的次数和在换路时刻发生突变的量分别是()。
企业供款作为社保资金时,其中失业保险的个人费率为个人工资的()
用观察法评估学生心理健康状况时,常用的记录方式有()。
有表示公司和职员及工作的三张表,职员可在多家公司兼职。其中公司C(公司号,公司名,地址,注册资本,法人代表,员工数),职员S(职员号,姓名,性别,年龄,学历),工作W(公司号,职员号,工资),则表W的键(码)为
Readtheadvicebelowaboutmeetingswithclients.Inmostofthelines(34-45),thereisoneextraword.Iteitherisgrammatica
A、Gotoashoptobuyaguitar.B、Gotoseearealrockstar.C、Singasongtogether.D、Haveacontestagainsteachother.D行动计划
最新回复
(
0
)