首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设方程组Ax=0有非零解。α是一个三维非零列向量,若Ax=0的任一解向量都可由α线性表出,则a=( )
设方程组Ax=0有非零解。α是一个三维非零列向量,若Ax=0的任一解向量都可由α线性表出,则a=( )
admin
2019-03-14
25
问题
设
方程组Ax=0有非零解。α是一个三维非零列向量,若Ax=0的任一解向量都可由α线性表出,则a=( )
选项
A、1。
B、一2。
C、1或一2。
D、一1。
答案
B
解析
由于Ax=0的任一解向量都可由α线性表出,所以α是Ax=0的基础解系,即Ax=0的基础解系只含一个解向量,因此r(A)=2。由方程组Ax=0有非零解可得,|A|=(a一1)
2
(a+2)=0,即a=1或一2。当a=1时,r(A)=1,舍去;当a=一2时,r(A)=2 0所以选B。
转载请注明原文地址:https://kaotiyun.com/show/jzV4777K
0
考研数学二
相关试题推荐
求极限
求极限
设矩阵,当k为何值时,存在可逆矩阵P,使得P一1AP为对角矩阵?并求出P和相应的对角矩阵。
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α2,Ak-1α≠0.证明:向量组α,Aα,…,Ak-1α是线性无关的。
n维向量组α1,α2……αs(3≤s≤n)线性无关的充要条件是()
设f(x)在(一∞,+∞)上连续,证明f(x)是以l(>0)为周期的周期函数的充要条件是对任意a∈(一∞,+∞)恒有∫aa+lf(x)dx=∫alf(x)dx。
设A,B均为n阶可逆矩阵,则下列等式中必定成立的是()
设三阶实对称矩阵A的特征值为λ1=一1,λ2=λ3=1,对应于λ1的特征向量为ξ1=(0,1,1)T,求A。
设函数f(x,y)=3x+4y一ax2一2ay2—2βxy。试问参数α,β满足什么条件时,函数有唯一极大值?有唯一极小值?
设f(χ)在χ0的邻域内四阶可导,且|f(4)(χ)|≤M(M>0).证明:对此邻域内任一异于χ0的点χ,有其中χ′为χ关于χ0的对称点.
随机试题
下肢外伤后,引起肢体极度外旋的损伤是
第一恒磨牙颊面剥脱性龋齿可选治疗药物是
肺动脉高压早期的x线表现是
药典、卫生部标准、省(市)自台区标准是《中华人民共和国药典》是
根据以下资料,回答下列问题。2012年1~11月份,全国民间固定资产投资201624亿元,同比增长25%。民间固定资产投资占固定资产投资的比重为61.8%,比1~10月份下降0.1个百分点。分地区看,东部地区民间固定资产投资99138
治安管理处罚应由县级以上人民政府公安机关决定,但以下哪些处罚是例外,可以由派出所决定()。
学校课程改革中主要是改革()
=______
在面向对象的程序设计中,可被对象识别的动作称为( )。
Whattypeofeventisthespeakerdiscussing?
最新回复
(
0
)