首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,…,αt是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设向量组α1,α2,…,αt是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
admin
2020-03-16
50
问题
设向量组α
1
,α
2
,…,α
t
是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ≠0.试证明:向量组β,β+α
1
,β+α
2
,…,β+α
t
线性无关.
选项
答案
设kβ+k
1
(β+α
1
)+…+k
t
(β+α
t
)=0,即 (k+k
1
+…+k
t
)β+k
1
α
1
+…+k
t
α
t
=0, 等式两边左乘A,得(k+k
1
+…+k
t
)Aβ=0[*]k+k
1
+…+k
t
=0,则k
1
α
1
+…+k
t
α
t
=0. 由α
1
,α
2
,…,α
t
线性无关,得k
1
=…=k
t
=0→k=0,所以β,β+α
1
,β+α
2
,…,β+α
t
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/k7A4777K
0
考研数学二
相关试题推荐
[2010年]设m,n均是正整数,则反常积分dx的收敛性().
(2012年试题,二)
(2008年)设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3.(Ⅰ)证明α1,α2,α3线性无关;(Ⅱ)令P=[α1,α2,α3],求P-1AP.
求下列极限:
设二元函数计算二重积分,其中D={(x,y)||x|+|y|≤2}。[img][/img]
已知λ1,λ2,λ3是A的特征值,α1,α2,α3是相应的特征向量且线性无关,如α1+α2+α3仍是A的特征向量,则λ1=λ2=λ3.
已知A是三阶实对称矩阵,满足A4+2A3+A2+2A=O,且秩r(A)=2,求矩阵A的全部特征值,并求秩r(A+E)。
设D是χOy平面上以(1,1),(-1,1),(-1,-1)为顶点的三角形区域,D1为区域D位于第一象限的部分,则(χy+cosχsiny)dσ等于().
若n阶行列式中零元素的个数多于n2-n,则该行列式的值为________.
随机试题
甲公司从2013年1月1日起对期末存货采用成本与可变现净值孰低计价,成本与可变现净值的比较采用单项比较法。该公司2013年12月31日X、Y、Z三种存货的成本分别为:30万元、25万元、34万元;X、Y、Z三种存货的可变现净值分别为:32万元、22万元、3
教学过程的一个必要环节,深刻领会知识并学以致用的必要前提是()
A.主动干预B.教育干预C.技术干预D.强制干预E.紧急处置给家长和儿童讲解交通法规属于预防意外伤害的()
该租赁合同的性质为()。若本案中双方未约定租赁期限,甲、乙双方又无法就租赁期限协议补充,下列关于合同解除的说法正确的是()。
编制预算时,SF6全封闭组合电器(GIS)安装高度在10m以上时,定额如何套用?
如果一家盈利上市公司的债权人转成了公司的股东,即实施了债转股,由此会使该公司()。
信赖利益( )履行利益是一项基本原则。
Document outputs are produced on(71), devices that produce text or images on paper.
A、Negotiatewithhisboss.B、Calmdownandwaitfortherighttime.C、Quithisjobandgetabetterone.D、Tryhardertobeprom
A、She’sunimpressedbywhatthemantoldher.B、Shedoubtsshecanaffordit.C、Shedoesn’tthinkit’ssuitableforher.D、She’s
最新回复
(
0
)