首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知,则秩(A—E)+秩(A一3E)=( ).
已知,则秩(A—E)+秩(A一3E)=( ).
admin
2021-10-08
38
问题
已知
,则秩(A—E)+秩(A一3E)=( ).
选项
A、7
B、6
C、5
D、4
答案
B
解析
B为实对称矩阵,可对角化,又因A~B,故B的特征值0、3(二重根)、一2必是A的特征值,且重数相同,故秩(A一3E)=4—2=2.
解 由
=λ(λ一3)(λ
2
一λ一6)=λ(λ一3)
2
(λ+2)
及A~B知,B的特征值为0,3(重根)与一2,且它们也是A的特征值.又因B是实对称,必可对角化,因此A可对角化,那么A对于λ=3必有两个线性无关的特征向量,即方程组(3E—A)X=0的一个基础体系只含2个解向量.由4一秩(3E—A)=2得到
秩(3E—A)=n一2=4—2=2.
又因λ=1不是A的特征值,即∣E—A∣≠0,故秩(E—A)=4.于是
秩(A—E)+秩(A一3E)=4+2=6.
转载请注明原文地址:https://kaotiyun.com/show/kDy4777K
0
考研数学二
相关试题推荐
当x→0+时,与等价的无穷小量是()[img][/img]
设一抛物线y=ax2+bx+c过点(0,0)与(1,2),且a<0,确定a,b,c,使得抛物线与x轴所围图形的面积最小.
设η1,η2,η3,η4是齐次线性方程组Ax=0的基础解系,则Ax=0的基础解系还可以是()
关于函数y=f(x)在点x0的以下结论正确的是()
设α1,α2,α3是AX=0的基础解系,则该方程组的基础解系还可表示成().
设函数内连续,且则常数a,b满足()
计算二重积分,其中积分区域D是由y轴与曲线所围成。
下列广义积分发散的是().
设抛物线y=ax2+bx+2lnc过原点,当0≤x≤1时,y≥0,又已知该抛物线与x轴及直线x=1所围图形的面积为1/3.试确定a,b,c,使此图形绕x轴旋转一周而成的旋转体的体积V最小.
设则df(x,y)=__________.
随机试题
患者进行肾静态显像,以下哪一项是不正确的
女,8岁。食冷饮时左下后牙感到酸痛2周,无自发痛史,检查发现左下第一磨牙颊面深龋,龋蚀范围稍广,腐质软而湿润,易挖除,但敏感。测牙髓活力同正常牙,叩诊(一)。首次就诊时,对该患牙应做的处理为
资产的特征不包括()。
43,36,30,25,18,12,()
女青年甲明知自己的男友乙杀了人,而帮助乙将杀人的匕首藏至自家的衣柜内并帮乙洗干净血衣。甲的行为
设X,Y为两个随机变量,且D(X)=9,Y=2X+3,则X,Y的相关系数为______.
Whatdoesitmeantorelax?Despite【C1】______thousandsoftimesduringthecourseofourlives,【C2】______havedeeplyconsidered
Thedaywasended—quitesuccessfully,sofarassheknew.TheTrusteesandthevisitingcommitteehadmadetheirrounds,andrea
A、Tomorrowmorning.B、OnThursdayafternoon.C、At3pmthisafternoon.D、Twohoursago.CWhattimeisthistrainleaving,John?
A、Findasuitablejob.B、Workinashoppingmall.C、Starthisownbusiness.
最新回复
(
0
)