首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2017年)设a0=1,a1=0,的和函数. (Ⅰ)证明幂级数的收敛半径不小于1; (Ⅱ)证明(1一x)S’(x)-xS(x)=0(x∈(一1,1)),并求S(x)的表达式.
(2017年)设a0=1,a1=0,的和函数. (Ⅰ)证明幂级数的收敛半径不小于1; (Ⅱ)证明(1一x)S’(x)-xS(x)=0(x∈(一1,1)),并求S(x)的表达式.
admin
2018-07-24
51
问题
(2017年)设a
0
=1,a
1
=0,
的和函数.
(Ⅰ)证明幂级数
的收敛半径不小于1;
(Ⅱ)证明(1一x)S’(x)-xS(x)=0(x∈(一1,1)),并求S(x)的表达式.
选项
答案
(Ⅰ)因为a
0
=1,a
1
=0, [*] 所以0≤a
n+1
≤1. 记R为幂级数[*]的收敛半径.当|x|<1时,因为|a
n
x
n
|≤|x|
n
且级数[*]收敛, 所以幂级数[*]绝对收敛,于是(一1,1)[*](一R,R),故R≥1. (Ⅱ) [*] 解方程(1一x)S’(x)-xS(x)=0得 [*] 由S(0)=a
0
=1得C=1,故 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/kGW4777K
0
考研数学三
相关试题推荐
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g’(x)<0,试证明存在ξ∈(a,b)使
设函数y=y(x)由2xy=x+y确定,求dy|x=0.
设函数f(x)二阶可导,且f’(x)>0,f"(x)>0,△y=f(x+△x)一f(x),其中△x<0,则().
将三封信随机地投入编号为1,2,3,4的四个邮箱,求没有信的邮箱数X的概率函数.
设连续型随机变量X的分布函数为其中a>0,Ф(x),φ(x)分别是标准正态分布的分布函数与概率密度,令,求Y的密度函数.
已知α1,α2,α3是齐次线性方程组Ax=0的一个基础解系,证明α1+α2,α2+α3,α3+α1也是该方程组的一个基础解系.
求出一个齐次线性方程组,使它的基础解系是η1=(2,-1,1,1)T,η2=(-1,2,4,7)T.
(1995年)设,则f(n)(x)=______·
(1995年)设试讨论f(x)在x=0处的连续性和可导性.
随机试题
试举例说明几种常见的词法范畴。
临床诊疗道德的原则是
不参与桡腕关节组成的是
甲国籍人罗伯逊与家人久居乙国,其原始住所在甲国。罗伯逊在乙国和丙国均有生意和住所,不时去丙国照看生意,并与在丙国居住的父母小住。近年来,由于罗伯逊在中国的生意越来越好,因而长期居住于在北京某饭店包租的578号房间。现涉及丙国的纠纷在中国法院审理,关于罗伯逊
提高底层演播厅隔墙的隔声效果,应选用下列哪种材料?[2000—013,1999—038]
某上市公司的董事会要进行涉及一项关联交易的表决,该公司董事会共有16人组成,其中有高某等6人与所涉及的交易有关联关系,另有3个董事因故没有参加该次董事会。则()。
如何有效地进行知识概括?
简述公司并购财务协同效用理论的主要内容。(华东师范大学2014真题)
Economicsoftenmissesanimportantelementofinequalitybetweenmalesandfemales:unpaidwork.Themainmeasureofeconomica
Directions:Inthispart,youwillhave15minutestogooverthepassagequicklyandanswerthequestionsonAnswerSheet1.Fo
最新回复
(
0
)